Search Header Logo

Hyperbolic Trig Identities

Authored by Jamie March

Mathematics

12th Grade - University

CCSS covered

Used 17+ times

Hyperbolic Trig Identities
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

13 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic identity for the trig identity:

 sin2x+cos2x=1\sin^2x+\cos^2x=1  ?

 sinh2xcosh2x=1-\sinh^2x-\cosh^2x=1  

 sinh2x+cosh2x=1\sinh^2x+\cosh^2x=1  

 cosh2xsinh2x=1\cosh^2x-\sinh^2x=1  

 cosh2x1=sinh2x\cosh^2x-1=\sinh^2x  

Tags

CCSS.HSF.TF.C.8

2.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig identity for the trig identity:

 tanx=sinxcosx\tan x=\frac{\sin x}{\cos x}  

 tanhx=sinhxcoshx\tanh x=\frac{\sinh x}{\cosh x}  

 tanhx=sinhxcoshx-\tanh x=\frac{\sinh x}{\cosh x}  

 tanhx=sinhxcoshx\tanh x=\frac{-\sinh x}{\cosh x}  

 tanhx=sinhxcoshx-\tanh x=\frac{-\sinh x}{\cosh x}  

Tags

CCSS.HSF.TF.C.8

3.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig function for the trig function:

 secxcosx=sinxtanx\sec x-\cos x=\sin x\tan x  

 sechxcoshx=sinhx tanhx\operatorname{sech}x-\cosh x=\sinh x\ \tanh x  

 coshxsechx=sinhxtanhx\cosh x-\operatorname{sech}x=\sinh x\tanh x  

 coshx+sechx=sinhxtanhx\cosh x+\operatorname{sech}x=\sinh x\tanh x  

 sechxcoshx=sinhxtanhx\operatorname{sech}x-\cosh x=-\sinh x\tanh x  

Tags

CCSS.HSF.TF.C.8

4.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig function for:

 cos2x=2cos2x1\cos2x=2\cos^2x-1  

 cosh(2x)=2cos2(x)1\cosh\left(2x\right)=2\cos^2\left(x\right)-1  

 cosh(2x)=2cosh2x1\cosh\left(2x\right)=2\cosh^2x-1  

 cosh(2x)+1=2cosh2x\cosh\left(2x\right)+1=2\cosh^2x  

 cosh(2x)2cosh2x=1\cosh\left(2x\right)-2\cosh^2x=1  

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic trig identity corresponding to:

 sin2(x2)=12(1cos(x))\sin^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cos\left(x\right)\right)  

 sinh2(x2)=12(1cosh(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cosh\left(x\right)\right)  

 sinh2(x2)=12(cosh(x)1)\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(\cosh\left(x\right)-1\right)  

 sinh2(x2)=12(1+cosh(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1+\cosh\left(x\right)\right)  

 sinh2(x2)=12(1cos(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cos\left(x\right)\right)  

Tags

CCSS.HSF.TF.C.8

6.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic trig identity for:

 cosec4xcot4x=cosec2x+cot2x\operatorname{cosec}^4x-\cot^4x=\operatorname{cosec}^2x+\cot^2x  

 cosech4x+coth4x=cosech2x+coth2x\operatorname{cosech}^4x+\coth^4x=\operatorname{cosech}^2x+\coth^2x  

 cosech4xcoth4x=cosech2x+coth2x\operatorname{cosech}^4x-\coth^4x=\operatorname{cosech}^2x+\coth^2x  

 cosech4xcoth4x=cosech2xcoth2x\operatorname{cosech}^4x-\coth^4x=-\operatorname{cosech}^2x-\coth^2x  

 cosech4xcoth4x=sech2xcoth2x\operatorname{cosech}^4x-\coth^4x=\operatorname{sech}^2x-\coth^2x  

7.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig equation for:

 sin(3θ)=3sin(θ)4sin3(θ)\sin\left(3\theta\right)=3\sin\left(\theta\right)-4\sin^3\left(\theta\right)  

 sinh(3θ)=3sinh(θ)4sinh3(θ)\sinh\left(3\theta\right)=3\sinh\left(\theta\right)-4\sinh^3\left(\theta\right)  

 sinh(3θ)=4sinh3(θ)3sinh(θ)\sinh\left(3\theta\right)=4\sinh^3\left(\theta\right)-3\sinh\left(\theta\right)  

 sinh(3θ)=4sinh3(θ)3sinh(θ)\sinh\left(3\theta\right)=-4\sinh^3\left(\theta\right)-3\sinh\left(\theta\right)  

 sinh(3θ)=3sinh(θ)+4sinh3(θ)\sinh\left(3\theta\right)=3\sinh\left(\theta\right)+4\sinh^3\left(\theta\right)  

Tags

CCSS.HSF.TF.C.9

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?