Hyperbolic Trig Identities

Hyperbolic Trig Identities

12th Grade - University

13 Qs

quiz-placeholder

Similar activities

Quizziz Test Laplace and ILT

Quizziz Test Laplace and ILT

University

10 Qs

Trigonometric and hyperbolic functions

Trigonometric and hyperbolic functions

University

10 Qs

[VI] Mathematicians Pool - EP 1: General

[VI] Mathematicians Pool - EP 1: General

6th Grade - Professional Development

10 Qs

Math 1740 Derivatives and Integrals Q1

Math 1740 Derivatives and Integrals Q1

University

8 Qs

EVALUACIÓN PARCIAL 1 A

EVALUACIÓN PARCIAL 1 A

University

10 Qs

CheckPoint Primer Corte

CheckPoint Primer Corte

University - Professional Development

13 Qs

Formula Quiz

Formula Quiz

University

12 Qs

LDE

LDE

University

10 Qs

Hyperbolic Trig Identities

Hyperbolic Trig Identities

Assessment

Quiz

Mathematics

12th Grade - University

Hard

Created by

Jamie March

Used 16+ times

FREE Resource

13 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic identity for the trig identity:

 sin2x+cos2x=1\sin^2x+\cos^2x=1  ?

 sinh2xcosh2x=1-\sinh^2x-\cosh^2x=1  

 sinh2x+cosh2x=1\sinh^2x+\cosh^2x=1  

 cosh2xsinh2x=1\cosh^2x-\sinh^2x=1  

 cosh2x1=sinh2x\cosh^2x-1=\sinh^2x  

2.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig identity for the trig identity:

 tanx=sinxcosx\tan x=\frac{\sin x}{\cos x}  

 tanhx=sinhxcoshx\tanh x=\frac{\sinh x}{\cosh x}  

 tanhx=sinhxcoshx-\tanh x=\frac{\sinh x}{\cosh x}  

 tanhx=sinhxcoshx\tanh x=\frac{-\sinh x}{\cosh x}  

 tanhx=sinhxcoshx-\tanh x=\frac{-\sinh x}{\cosh x}  

3.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig function for the trig function:

 secxcosx=sinxtanx\sec x-\cos x=\sin x\tan x  

 sechxcoshx=sinhx tanhx\operatorname{sech}x-\cosh x=\sinh x\ \tanh x  

 coshxsechx=sinhxtanhx\cosh x-\operatorname{sech}x=\sinh x\tanh x  

 coshx+sechx=sinhxtanhx\cosh x+\operatorname{sech}x=\sinh x\tanh x  

 sechxcoshx=sinhxtanhx\operatorname{sech}x-\cosh x=-\sinh x\tanh x  

4.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig function for:

 cos2x=2cos2x1\cos2x=2\cos^2x-1  

 cosh(2x)=2cos2(x)1\cosh\left(2x\right)=2\cos^2\left(x\right)-1  

 cosh(2x)=2cosh2x1\cosh\left(2x\right)=2\cosh^2x-1  

 cosh(2x)+1=2cosh2x\cosh\left(2x\right)+1=2\cosh^2x  

 cosh(2x)2cosh2x=1\cosh\left(2x\right)-2\cosh^2x=1  

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic trig identity corresponding to:

 sin2(x2)=12(1cos(x))\sin^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cos\left(x\right)\right)  

 sinh2(x2)=12(1cosh(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cosh\left(x\right)\right)  

 sinh2(x2)=12(cosh(x)1)\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(\cosh\left(x\right)-1\right)  

 sinh2(x2)=12(1+cosh(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1+\cosh\left(x\right)\right)  

 sinh2(x2)=12(1cos(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cos\left(x\right)\right)  

6.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic trig identity for:

 cosec4xcot4x=cosec2x+cot2x\operatorname{cosec}^4x-\cot^4x=\operatorname{cosec}^2x+\cot^2x  

 cosech4x+coth4x=cosech2x+coth2x\operatorname{cosech}^4x+\coth^4x=\operatorname{cosech}^2x+\coth^2x  

 cosech4xcoth4x=cosech2x+coth2x\operatorname{cosech}^4x-\coth^4x=\operatorname{cosech}^2x+\coth^2x  

 cosech4xcoth4x=cosech2xcoth2x\operatorname{cosech}^4x-\coth^4x=-\operatorname{cosech}^2x-\coth^2x  

 cosech4xcoth4x=sech2xcoth2x\operatorname{cosech}^4x-\coth^4x=\operatorname{sech}^2x-\coth^2x  

7.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig equation for:

 sin(3θ)=3sin(θ)4sin3(θ)\sin\left(3\theta\right)=3\sin\left(\theta\right)-4\sin^3\left(\theta\right)  

 sinh(3θ)=3sinh(θ)4sinh3(θ)\sinh\left(3\theta\right)=3\sinh\left(\theta\right)-4\sinh^3\left(\theta\right)  

 sinh(3θ)=4sinh3(θ)3sinh(θ)\sinh\left(3\theta\right)=4\sinh^3\left(\theta\right)-3\sinh\left(\theta\right)  

 sinh(3θ)=4sinh3(θ)3sinh(θ)\sinh\left(3\theta\right)=-4\sinh^3\left(\theta\right)-3\sinh\left(\theta\right)  

 sinh(3θ)=3sinh(θ)+4sinh3(θ)\sinh\left(3\theta\right)=3\sinh\left(\theta\right)+4\sinh^3\left(\theta\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?