Search Header Logo

Coordenadas polares

Authored by Jason Ascencio

Mathematics

10th Grade

CCSS covered

Used 19+ times

Coordenadas polares
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Coordenadas del punto A

(1,0°)

(2,90°)

(3, 210°)

(3,150°)

(1,240°)

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Convierte de coordenada polar a su equivalente rectangular:


(6,270°)

(0,-6)

(0,6)

(6,0)

Tags

CCSS.HSN.CN.B.4

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Convierte de coordenada rectangular a su equivalente polar:


(2,2)

(2.82,45°)

(-2.82,45°)

(2.82,-45°)

Tags

CCSS.HSN.CN.B.4

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

El ángulo suplementario de 27° es

63°

72°

153°

243°

5.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Media Image

Halla la ecuación de la elipse de acuerdo con los datos de la imagen, en donde C representa el centro, F el foco y A uno de sus vértices.



 (X3)221+(Y+2)225=1\frac{\left(X-3\right)^2}{21}+\frac{\left(Y+2\right)^2}{25}=1 

 X225+Y221=1\frac{X^2}{25}+\frac{Y^2}{21}=1 

 (X+3)225+(Y2)221=1\frac{\left(X+3\right)^2}{25}+\frac{\left(Y-2\right)^2}{21}=1 

 (x3)225+(y+2)221=1\frac{\left(x-3\right)^2}{25}+\frac{\left(y+2\right)^2}{21}=1  

 (x+3)221+(y2)225=1\frac{\left(x+3\right)^2}{21}+\frac{\left(y-2\right)^2}{25}=1  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La ecuación polar de la circunferencia con centro en el punto

 (1,3)\left(1,\sqrt{3}\right)  y que pasa por el polo es:

 r=8cos(θπ3)r=8\cos\left(\theta-\frac{\pi}{3}\right)  

 r=4cos(θπ3)r=4\cos\left(\theta-\frac{\pi}{3}\right)  

 r=8cos(θπ6)r=8\cos\left(\theta-\frac{\pi}{6}\right)  

 r=4cos(θπ6)r=4\cos\left(\theta-\frac{\pi}{6}\right)  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La ecuación polar de la circunferencia con centro en el punto

 (12,2)\left(\sqrt{12},2\right)  y que pasa por el polo es:

 r=8cos(θπ3)r=8\cos\left(\theta-\frac{\pi}{3}\right)  

 r=4cos(θπ3)r=4\cos\left(\theta-\frac{\pi}{3}\right)  

 r=8cos(θπ6)r=8\cos\left(\theta-\frac{\pi}{6}\right)  

 r=4cos(θπ6)r=4\cos\left(\theta-\frac{\pi}{6}\right)  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?