Goniometria

Goniometria

12th Grade

13 Qs

quiz-placeholder

Similar activities

Penilaian Harian 2 Matematika Peminatan (Limit diketakhinggaan)

Penilaian Harian 2 Matematika Peminatan (Limit diketakhinggaan)

12th Grade

15 Qs

Graphing Trig Review

Graphing Trig Review

10th Grade - University

18 Qs

Postes Masalah Integral

Postes Masalah Integral

10th Grade - University

10 Qs

Ukuran Penyebaran Data

Ukuran Penyebaran Data

12th Grade

15 Qs

ULANGAN HARIAN SEMESTER 1 MATEMATIKA PEMINATAN X MIPA

ULANGAN HARIAN SEMESTER 1 MATEMATIKA PEMINATAN X MIPA

12th Grade

13 Qs

Remidial Dimensi 3

Remidial Dimensi 3

12th Grade

15 Qs

TUGAS 3 QUIZ DIMENSI TIGA

TUGAS 3 QUIZ DIMENSI TIGA

12th Grade

10 Qs

Limit Tak hingga 1

Limit Tak hingga 1

12th Grade - University

10 Qs

Goniometria

Goniometria

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Medium

Created by

Rossana De Luca

Used 9+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

13 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

L'angolo  54π \ \frac{5}{4}\pi\   espresso in radiante corrisponde alla scala sessagesimale:

225°

235°

220°

210°

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

75° espresso in scala sessagesimale corrisponde in radianti:

56π\frac{5}{6}\pi

512π\frac{5}{12}\pi

56π\frac{5}{6}\pi

712π\frac{7}{12}\pi

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sapendo che sin α=34\sin\ \alpha=\frac{3}{4}  e che  α\alpha  è un angolo acuto, calcolare le altre funzioni goniometriche di  α\alpha .

 cos α=74 ;          tan α=37\cos\ \alpha=\frac{\sqrt{7}}{4}\ ;\ \ \ \ \ \ \ \ \ \ \tan\ \alpha=\frac{3}{\sqrt{7}}  

 cos α=37;              tan α=74\cos\ \alpha=\frac{3}{\sqrt{7}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \tan\ \alpha=\frac{\sqrt{7}}{4}  

 cos α=74;            tan α=73\cos\ \alpha=\frac{\sqrt{7}}{4};\ \ \ \ \ \ \ \ \ \ \ \ \tan\ \alpha=\frac{\sqrt{7}}{3}  

 cos α=47;             tan α=37\cos\ \alpha=\frac{4}{\sqrt{7}};\ \ \ \ \ \ \ \ \ \ \ \ \ \tan\ \alpha=\frac{3}{\sqrt{7}}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sapendo che  tan α=2\tan\ \alpha=-2 e che  α\alpha  è un angolo ottuso, trovare i valori delle altre funzioni goniometriche:

 sin α=25;            cos α=15\sin\ \alpha=-\frac{2}{\sqrt{5}};\ \ \ \ \ \ \ \ \ \ \ \ \cos\ \alpha=-\frac{1}{\sqrt{5}}  

 sinα=25;            cosα=15\sin\alpha=\frac{2}{\sqrt{5}};\ \ \ \ \ \ \ \ \ \ \ \ \cos\alpha=-\frac{1}{\sqrt{5}}  

 sinα=25;         cosα=15\sin\alpha=\frac{2}{\sqrt{5}};\ \ \ \ \ \ \ \ \ \cos\alpha=\frac{1}{\sqrt{5}}  

 sinα=25;          cosα=15\sin\alpha=-\frac{2}{\sqrt{5}};\ \ \ \ \ \ \ \ \ \ \cos\alpha=\frac{1}{\sqrt{5}}  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Calcolare le funzioni goniometriche fondamentali dell'angolo di  α=\alpha=  120°:

 sinα=32;    cosα=12;   tanα=3\sin\alpha=\frac{\sqrt{3}}{2};\ \ \ \ \cos\alpha=-\frac{1}{2};\ \ \ \tan\alpha=-\sqrt{3} 

 sinα=32;   cosα=12;   tanα=3\sin\alpha=-\frac{\sqrt{3}}{2};\ \ \ \cos\alpha=\frac{1}{2};\ \ \ \tan\alpha=-\sqrt{3} 

 sinα=32;   cosα=12;   tanα=3\sin\alpha=-\frac{\sqrt{3}}{2};\ \ \ \cos\alpha=-\frac{1}{2};\ \ \ \tan\alpha=\sqrt{3} 

 sinα=32;      cosα=12;      tanα=3\sin\alpha=\frac{\sqrt{3}}{2};\ \ \ \ \ \ \cos\alpha=\frac{1}{2};\ \ \ \ \ \ \tan\alpha=\sqrt{3} 

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcolare, in funzione dell'angolo  α\alpha , il valore dell'espressione  cos (π+α)+sin(πα)tan(π2α)cos(π2+α)\cos\ \left(\pi+\alpha\right)+\sin\left(\pi-\alpha\right)-\tan\left(\frac{\pi}{2}-\alpha\right)\cos\left(\frac{\pi}{2}+\alpha\right) 

 sin α-\sin\ \alpha  

 sin α\sin\ \alpha  

 cosα\cos\alpha  

 cosα-\cos\alpha  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Semplifica la seguente espressione  sin2α1cos2α+tan2α+sin2αtan2α+11+tan2α\sin^2\alpha-\frac{1}{\cos^2\alpha}+\tan^2\alpha+\frac{\sin^2\alpha}{\tan^2\alpha}+\frac{1}{1+\tan^2\alpha}  

esprimendola in funzione di cos  α\alpha  

 cosα\cos\alpha  

  cosα-\ \cos\alpha  

 cos2α\cos^2\alpha  

  cos2α-\ \cos^2\alpha  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?