Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

quiz-placeholder

Similar activities

LIMIT FUNGSI TRIGONOMETRI TAK HINGGA

LIMIT FUNGSI TRIGONOMETRI TAK HINGGA

12th Grade

10 Qs

OPERASI MATRIKS

OPERASI MATRIKS

11th Grade

15 Qs

Matemática Básica II

Matemática Básica II

12th Grade

10 Qs

Determinantes

Determinantes

10th - 12th Grade

11 Qs

Chapter 1: Quadratic Functions and Equations in One Variable

Chapter 1: Quadratic Functions and Equations in One Variable

11th - 12th Grade

13 Qs

PH 1

PH 1

10th - 12th Grade

15 Qs

Enters (Easy)

Enters (Easy)

7th - 12th Grade

16 Qs

ULANGAN 1 JARAK

ULANGAN 1 JARAK

12th Grade

10 Qs

Integrals in Summation Notation

Integrals in Summation Notation

Assessment

Quiz

Mathematics

11th Grade - University

Practice Problem

Medium

Created by

Dan Schwanekamp

Used 77+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

13 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the limits is equivalent to the following definite integral?

Media Image
Media Image
Media Image
Media Image

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 25(x3+3)dx\int_2^5\left(x^3+3\right)dx  as limit of a sum is equivalent to

 limni=1n[(2+3in)3+3]1n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{1}{n}  

 limni=1n[(2+3in)3+3]3in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3i}{n}  

 limni=1n[(3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

 limni=1n[(2+3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 0πcosxdx \int_0^{\pi}\cos xdx\   as limit of a sum is equivalent to

 limni=1n[cos(πin)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(in)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(πin)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{\pi}{n}  

 limni=1n[cos(in)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{\pi}{n}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 limni=1n[(5in)2+5in+1]5n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{5i}{n}\right)^2+\frac{5i}{n}+1\right]\frac{5}{n}  in integral notation would be 

 05(x2+x+1)dx\int_0^5\left(x^2+x+1\right)dx  

 56(x2+x+1)dx\int_5^6\left(x^2+x+1\right)dx  

 01((5x)2+5x+1)dx\int_0^1\left(\left(5x\right)^2+5x+1\right)dx  

 010(x22+x2+1)dx\int_0^{10}\left(\frac{x^2}{2}+\frac{x}{2}+1\right)dx  

5.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

 limni=1n[2+3+4in]4n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[2+\sqrt{3+\frac{4i}{n}}\right]\frac{4}{n}  in integral notation would be 

 37(2+x)dx\int_3^7\left(2+\sqrt{x}\right)dx  

 04(2+x)dx\int_0^4\left(2+\sqrt{x}\right)dx  

 37(2x+x)dx\int_3^7\left(2x+\sqrt{x}\right)dx  

 37(2+3+x)dx\int_3^7\left(2+\sqrt{3+x}\right)dx  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the definite integrals is equivalent to the following limit?

Media Image
Media Image
Media Image
Media Image

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the limits is equivalent to the following definite integral?

Media Image
Media Image
Media Image
Media Image

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?