Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

quiz-placeholder

Similar activities

Math 12 Essentials - Word Problems Adding and Subtracting

Math 12 Essentials - Word Problems Adding and Subtracting

12th Grade

14 Qs

Rheolau Indecsau - bl.9 (uwch)

Rheolau Indecsau - bl.9 (uwch)

8th - 11th Grade

18 Qs

Práctica de razones trigonométricas 2

Práctica de razones trigonométricas 2

11th Grade

10 Qs

Latihan soal KSN matematika SD

Latihan soal KSN matematika SD

5th - 12th Grade

10 Qs

Pengetahuan Umum Matematik

Pengetahuan Umum Matematik

7th - 12th Grade

18 Qs

Parametrics Quiz

Parametrics Quiz

KG - University

10 Qs

Angle Vocabulary

Angle Vocabulary

9th - 12th Grade

16 Qs

Set Notations

Set Notations

12th Grade

15 Qs

Integrals in Summation Notation

Integrals in Summation Notation

Assessment

Quiz

Mathematics

11th Grade - University

Practice Problem

Medium

Created by

Dan Schwanekamp

Used 77+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

13 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the limits is equivalent to the following definite integral?

Media Image
Media Image
Media Image
Media Image

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 25(x3+3)dx\int_2^5\left(x^3+3\right)dx  as limit of a sum is equivalent to

 limni=1n[(2+3in)3+3]1n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{1}{n}  

 limni=1n[(2+3in)3+3]3in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3i}{n}  

 limni=1n[(3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

 limni=1n[(2+3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 0πcosxdx \int_0^{\pi}\cos xdx\   as limit of a sum is equivalent to

 limni=1n[cos(πin)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(in)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(πin)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{\pi}{n}  

 limni=1n[cos(in)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{\pi}{n}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 limni=1n[(5in)2+5in+1]5n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{5i}{n}\right)^2+\frac{5i}{n}+1\right]\frac{5}{n}  in integral notation would be 

 05(x2+x+1)dx\int_0^5\left(x^2+x+1\right)dx  

 56(x2+x+1)dx\int_5^6\left(x^2+x+1\right)dx  

 01((5x)2+5x+1)dx\int_0^1\left(\left(5x\right)^2+5x+1\right)dx  

 010(x22+x2+1)dx\int_0^{10}\left(\frac{x^2}{2}+\frac{x}{2}+1\right)dx  

5.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

 limni=1n[2+3+4in]4n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[2+\sqrt{3+\frac{4i}{n}}\right]\frac{4}{n}  in integral notation would be 

 37(2+x)dx\int_3^7\left(2+\sqrt{x}\right)dx  

 04(2+x)dx\int_0^4\left(2+\sqrt{x}\right)dx  

 37(2x+x)dx\int_3^7\left(2x+\sqrt{x}\right)dx  

 37(2+3+x)dx\int_3^7\left(2+\sqrt{3+x}\right)dx  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the definite integrals is equivalent to the following limit?

Media Image
Media Image
Media Image
Media Image

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the limits is equivalent to the following definite integral?

Media Image
Media Image
Media Image
Media Image

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?