MATH34032_Video3_variationofparameters

MATH34032_Video3_variationofparameters

University

5 Qs

quiz-placeholder

Similar activities

SUMA Y RESTA DE POLINOMIOS

SUMA Y RESTA DE POLINOMIOS

1st Grade - University

10 Qs

Identités remarquables

Identités remarquables

9th Grade - Professional Development

9 Qs

KUIS 7. DERET PANGKAT DAN TRANSFORMASI LAPLACE

KUIS 7. DERET PANGKAT DAN TRANSFORMASI LAPLACE

University

10 Qs

Diagnóstico del curso

Diagnóstico del curso

10th Grade - University

8 Qs

Precalculus Review - Transformations

Precalculus Review - Transformations

10th Grade - University

10 Qs

phân tich đa thức thành nhân tử

phân tich đa thức thành nhân tử

University

10 Qs

Jugando un ratito

Jugando un ratito

University

5 Qs

Unidad I y II

Unidad I y II

University

7 Qs

MATH34032_Video3_variationofparameters

MATH34032_Video3_variationofparameters

Assessment

Quiz

Mathematics

University

Hard

Created by

Sean Holman

Used 7+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Suppose that a complementary solution is

 uc(x)=c1u1(x)+c2u2(x).u_c\left(x\right)=c_1u_1\left(x\right)+c_2u_2\left(x\right).  The ansatz for the particular solution in variation of parameters ... (Select all options which are correct.)

... is up(x)=v1(x)u1(x)+v2(x)u2(x).u_p\left(x\right)=v_1\left(x\right)u_1\left(x\right)+v_2\left(x\right)u_2\left(x\right). 

... depends on the right hand side of the ODE.

... is the same as the complementary solution.

... only works in some cases.

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Consider the ODE

 u=f(x)u''=f\left(x\right) . Which of the following is a complementary solution?

 uc(x)=c1x+c2.u_c\left(x\right)=c_1x+c_2.  

A second integral of  ff .

 uc(x)=c1x+c2ln(x)xu_c\left(x\right)=c_1x+c_2\ln\left(x\right)x  

 uc(x)=c1+c2ln(x)u_c\left(x\right)=c_1+c_2\ln\left(x\right)  

Answer explanation

For the next question we will use the complementary solution uc(x)=c1x+c2u_c\left(x\right)=c_1x+c_2  (i.e.  u1(x)=xu_1\left(x\right)=x  and u2(x)=1u_2\left(x\right)=1 )

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Using the complementary solution from the last question, variation of paramters will give which of the following as a particular solution for the ODE

 u=f(x)?u''=f\left(x\right)? 

 up(x)=x(xx0)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^x\left(x-x_0\right)f\left(x_0\right)dx_0  

 up(x)=x(x01)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^x\left(x_0-1\right)f\left(x_0\right)dx_0  

 up(x)=x0(xx0)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^{x_0}\left(x-x_0\right)f\left(x_0\right)dx_0  

 up(x)=x(x1)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^x\left(x-1\right)f\left(x_0\right)dx_0  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Using the same method as the example in the video, which of the following would be a Green's function for the differential operator

 L=d2dx2+4?L=\frac{\text{d}^2}{\text{d}x^2}+4?  

 G=12sin(2(xx0))H(xx0)G=\frac{1}{2}\sin\left(2\left(x-x_0\right)\right)H\left(x-x_0\right) 

 G=14sin(4(xx0))H(xx0)G=\frac{1}{4}\sin\left(4\left(x-x_0\right)\right)H\left(x-x_0\right) 

 G=12cos(2(xx0))H(xx0)G=\frac{1}{2}\cos\left(2\left(x-x_0\right)\right)H\left(x-x_0\right) 

 G=14cos(4(xx0))H(xx0)G=\frac{1}{4}\cos\left(4\left(x-x_0\right)\right)H\left(x-x_0\right) 

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Use variation of parameters to find a particular solution for the ODE

 x2u6u=f(x)x^2u''-6u=f\left(x\right)  on the domain  x>0x>0 .

 up(x)=1x(x3x02x03x2)f(x0)5x02dx0u_p\left(x\right)=\int_1^x\left(\frac{x^3}{x_0^2}-\frac{x_0^3}{x^2}\right)\frac{f\left(x_0\right)}{5x_0^2}^{ }dx_0  

 up(x)=1x(x03x2x3x02)f(x0)5x02dx0u_p\left(x\right)=\int_1^x\left(\frac{x_0^3}{x_{ }^2}-\frac{x_{ }^3}{x_0^2}\right)\frac{f\left(x_0\right)}{5x_0^2}dx_0  

 up(x)=1x(x3x02x03x2)f(x0)5x2dx0u_p\left(x\right)=\int_1^x\left(\frac{x^3}{x_0^2}-\frac{x_0^3}{x^2}\right)\frac{f\left(x_0\right)}{5x_{ }^2}dx_0  

 up(x)=1x0(x3x02x03x2)f(x0)5x02dx0u_p\left(x\right)=\int_1^{x_0}\left(\frac{x^3}{x_0^2}-\frac{x_0^3}{x^2}\right)\frac{f\left(x_0\right)}{5x_0^2}dx_0  

Answer explanation

Note that since the domain is  x>0x>0 , the lower limit in the integral should be positive.