MATH34032_Video3_variationofparameters

MATH34032_Video3_variationofparameters

University

5 Qs

quiz-placeholder

Similar activities

Repaso Límites y Continuidad

Repaso Límites y Continuidad

University

10 Qs

Ecuaciones logarítmicas. Valor absoluto. M1. FaEA.

Ecuaciones logarítmicas. Valor absoluto. M1. FaEA.

University

9 Qs

QUIZ CHAPTER 1

QUIZ CHAPTER 1

11th Grade - University

10 Qs

DICIEMBRE 6TO EXAMEN BIMESTRAL DE MATEMÁTICA

DICIEMBRE 6TO EXAMEN BIMESTRAL DE MATEMÁTICA

6th Grade - University

10 Qs

TUD_Game 2

TUD_Game 2

University

9 Qs

MGSE.7.G2 (Triangles)

MGSE.7.G2 (Triangles)

KG - University

10 Qs

Ôn tập KTTX lần 3 _ HK2_ Toán 8

Ôn tập KTTX lần 3 _ HK2_ Toán 8

8th Grade - University

10 Qs

QUIZ 2 Indices and logarithm

QUIZ 2 Indices and logarithm

University

10 Qs

MATH34032_Video3_variationofparameters

MATH34032_Video3_variationofparameters

Assessment

Quiz

Mathematics

University

Practice Problem

Hard

Created by

Sean Holman

Used 7+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

5 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Suppose that a complementary solution is

 uc(x)=c1u1(x)+c2u2(x).u_c\left(x\right)=c_1u_1\left(x\right)+c_2u_2\left(x\right).  The ansatz for the particular solution in variation of parameters ... (Select all options which are correct.)

... is up(x)=v1(x)u1(x)+v2(x)u2(x).u_p\left(x\right)=v_1\left(x\right)u_1\left(x\right)+v_2\left(x\right)u_2\left(x\right). 

... depends on the right hand side of the ODE.

... is the same as the complementary solution.

... only works in some cases.

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Consider the ODE

 u=f(x)u''=f\left(x\right) . Which of the following is a complementary solution?

 uc(x)=c1x+c2.u_c\left(x\right)=c_1x+c_2.  

A second integral of  ff .

 uc(x)=c1x+c2ln(x)xu_c\left(x\right)=c_1x+c_2\ln\left(x\right)x  

 uc(x)=c1+c2ln(x)u_c\left(x\right)=c_1+c_2\ln\left(x\right)  

Answer explanation

For the next question we will use the complementary solution uc(x)=c1x+c2u_c\left(x\right)=c_1x+c_2  (i.e.  u1(x)=xu_1\left(x\right)=x  and u2(x)=1u_2\left(x\right)=1 )

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Using the complementary solution from the last question, variation of paramters will give which of the following as a particular solution for the ODE

 u=f(x)?u''=f\left(x\right)? 

 up(x)=x(xx0)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^x\left(x-x_0\right)f\left(x_0\right)dx_0  

 up(x)=x(x01)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^x\left(x_0-1\right)f\left(x_0\right)dx_0  

 up(x)=x0(xx0)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^{x_0}\left(x-x_0\right)f\left(x_0\right)dx_0  

 up(x)=x(x1)f(x0)dx0u_p\left(x\right)=\int_{-\infty}^x\left(x-1\right)f\left(x_0\right)dx_0  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Using the same method as the example in the video, which of the following would be a Green's function for the differential operator

 L=d2dx2+4?L=\frac{\text{d}^2}{\text{d}x^2}+4?  

 G=12sin(2(xx0))H(xx0)G=\frac{1}{2}\sin\left(2\left(x-x_0\right)\right)H\left(x-x_0\right) 

 G=14sin(4(xx0))H(xx0)G=\frac{1}{4}\sin\left(4\left(x-x_0\right)\right)H\left(x-x_0\right) 

 G=12cos(2(xx0))H(xx0)G=\frac{1}{2}\cos\left(2\left(x-x_0\right)\right)H\left(x-x_0\right) 

 G=14cos(4(xx0))H(xx0)G=\frac{1}{4}\cos\left(4\left(x-x_0\right)\right)H\left(x-x_0\right) 

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Use variation of parameters to find a particular solution for the ODE

 x2u6u=f(x)x^2u''-6u=f\left(x\right)  on the domain  x>0x>0 .

 up(x)=1x(x3x02x03x2)f(x0)5x02dx0u_p\left(x\right)=\int_1^x\left(\frac{x^3}{x_0^2}-\frac{x_0^3}{x^2}\right)\frac{f\left(x_0\right)}{5x_0^2}^{ }dx_0  

 up(x)=1x(x03x2x3x02)f(x0)5x02dx0u_p\left(x\right)=\int_1^x\left(\frac{x_0^3}{x_{ }^2}-\frac{x_{ }^3}{x_0^2}\right)\frac{f\left(x_0\right)}{5x_0^2}dx_0  

 up(x)=1x(x3x02x03x2)f(x0)5x2dx0u_p\left(x\right)=\int_1^x\left(\frac{x^3}{x_0^2}-\frac{x_0^3}{x^2}\right)\frac{f\left(x_0\right)}{5x_{ }^2}dx_0  

 up(x)=1x0(x3x02x03x2)f(x0)5x02dx0u_p\left(x\right)=\int_1^{x_0}\left(\frac{x^3}{x_0^2}-\frac{x_0^3}{x^2}\right)\frac{f\left(x_0\right)}{5x_0^2}dx_0  

Answer explanation

Note that since the domain is  x>0x>0 , the lower limit in the integral should be positive.

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?