TRIGONOMETRIA

TRIGONOMETRIA

12th Grade

10 Qs

quiz-placeholder

Similar activities

Inverse Trig Compositions

Inverse Trig Compositions

9th - 12th Grade

12 Qs

Nilai maksimum dan minimum fungsi trigonometri

Nilai maksimum dan minimum fungsi trigonometri

12th Grade

10 Qs

Inverse Trigonometric Values

Inverse Trigonometric Values

10th - 12th Grade

14 Qs

Unit Circle Quiz (Quadrant 1)

Unit Circle Quiz (Quadrant 1)

10th - 12th Grade

10 Qs

Precalculus

Precalculus

11th - 12th Grade

13 Qs

Sum and Difference Angles Identities

Sum and Difference Angles Identities

11th - 12th Grade

12 Qs

MAT2_21_07 Grafy goniometrických funkcí

MAT2_21_07 Grafy goniometrických funkcí

9th - 12th Grade

10 Qs

Writing Trig Equations from Graphs

Writing Trig Equations from Graphs

10th - 12th Grade

10 Qs

TRIGONOMETRIA

TRIGONOMETRIA

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Fátima Morais

Used 43+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sabendo que

 sinα=45\sin\alpha=-\frac{4}{5}  e que  α3º Q\alpha\in3º\ Q  determine o valor exato de  cos(π4+α)\cos\left(\frac{\pi}{4}+\alpha\right)  .

 7210\frac{7\sqrt{2}}{10}  

 210\frac{\sqrt{2}}{10}  

 210-\frac{\sqrt{2}}{10}  

 25\frac{\sqrt{2}}{5}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Em R, as soluções da equação cos(2x)+cos(x)+1=0\cos\left(2x\right)+\cos\left(x\right)+1=0 são da forma

x=π2+kπ x=2π3+2kπ x=2π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=-\frac{2\pi}{3}+2k\pi\ ,\ k\in Z

x=π2+kπ x=2π3+2kπ x=5π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=\frac{5\pi}{3}+2k\pi\ ,\ k\in Z

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A função definida por f(x)=14+3cos(x5π4)f\left(x\right)=-\frac{1}{4}+3\cos\left(-\frac{x}{5}-\frac{\pi}{4}\right)  tem período positivo mínimo 


 2π rad2\pi\ rad  

 4π rad4\pi\ rad  

 π4 rad\frac{\pi}{4}\ rad  

 10π rad10\pi\ rad  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Qual é o contradomínio da função definida por  h(x)=22sin(2x)22h\left(x\right)=-\frac{\sqrt{2}}{2}\sin\left(2x\right)-\frac{\sqrt{2}}{2}  


 0,22\lceil0,\frac{\sqrt{2}}{2}\rceil  

 2,0\lceil-\sqrt{2},0\rceil  

 1,1\lceil-1,1\rceil  

 2,2\lceil-\sqrt{2},\sqrt{2}\rceil  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Podemos afirmar que as funções definidas por  f(x)=xsin2(2x) f\left(x\right)=-\frac{x}{\sin^2\left(2x\right)}\   e   g(x)=1tan(2x)g\left(x\right)=\frac{1}{\tan\left(2x\right)}  são

ambas pares.

ambas ímpares.

 ff  é par e  gg  é ímpar.

 g g\   é par e  ff  é ímpar.

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Os gráficos das funções  f(x)=2cos(2x)f\left(x\right)=-2\cos\left(2x\right)  e  g(x)=2sin(x2)g\left(x\right)=-2\sin\left(\frac{x}{2}\right)  , no intervalo  0,2π\lceil0,2\pi\rceil  intersetam-se no ponto de coordenadas

 (π2,2)\left(\frac{\pi}{2},2\right)  

 (π,2)\left(\pi,-2\right)  

 (π,2)\left(\pi,2\right)  

 (π2,2)\left(\frac{\pi}{2},-2\right)  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

O domínio da função definida por  h(x)=11cos(x2)h\left(x\right)=\frac{1}{1-\left|\cos\left(\frac{x}{2}\right)\right|}  é

 ZZ  

 RR  

 xR  x2kπ ,  kZx\in R\ \wedge\ x\ne2k\pi\ ,\ \ k\in Z  

 xR  x=2kπ , kZx\in R\ \wedge\ x=2k\pi\ ,\ k\in Z  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?