TRIGONOMETRIA

TRIGONOMETRIA

12th Grade

10 Qs

quiz-placeholder

Similar activities

Математика

Математика

1st Grade - University

7 Qs

Matematika bangun ruang Kelas 6

Matematika bangun ruang Kelas 6

7th - 12th Grade

10 Qs

分数练习

分数练习

1st - 12th Grade

10 Qs

Derivatives and Integrals to Know

Derivatives and Integrals to Know

11th - 12th Grade

12 Qs

Latihan Soal UN Matematika

Latihan Soal UN Matematika

12th Grade

10 Qs

Revisão 5°ano ETAPA 1

Revisão 5°ano ETAPA 1

12th Grade

10 Qs

INTEGRALES DE POLINOMIOS

INTEGRALES DE POLINOMIOS

12th Grade

15 Qs

Quis persamaan trigonometri

Quis persamaan trigonometri

10th - 12th Grade

15 Qs

TRIGONOMETRIA

TRIGONOMETRIA

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Hard

Created by

Fátima Morais

Used 43+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sabendo que

 sinα=45\sin\alpha=-\frac{4}{5}  e que  α3º Q\alpha\in3º\ Q  determine o valor exato de  cos(π4+α)\cos\left(\frac{\pi}{4}+\alpha\right)  .

 7210\frac{7\sqrt{2}}{10}  

 210\frac{\sqrt{2}}{10}  

 210-\frac{\sqrt{2}}{10}  

 25\frac{\sqrt{2}}{5}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Em R, as soluções da equação cos(2x)+cos(x)+1=0\cos\left(2x\right)+\cos\left(x\right)+1=0 são da forma

x=π2+kπ x=2π3+2kπ x=2π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=-\frac{2\pi}{3}+2k\pi\ ,\ k\in Z

x=π2+kπ x=2π3+2kπ x=5π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=\frac{5\pi}{3}+2k\pi\ ,\ k\in Z

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A função definida por f(x)=14+3cos(x5π4)f\left(x\right)=-\frac{1}{4}+3\cos\left(-\frac{x}{5}-\frac{\pi}{4}\right)  tem período positivo mínimo 


 2π rad2\pi\ rad  

 4π rad4\pi\ rad  

 π4 rad\frac{\pi}{4}\ rad  

 10π rad10\pi\ rad  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Qual é o contradomínio da função definida por  h(x)=22sin(2x)22h\left(x\right)=-\frac{\sqrt{2}}{2}\sin\left(2x\right)-\frac{\sqrt{2}}{2}  


 0,22\lceil0,\frac{\sqrt{2}}{2}\rceil  

 2,0\lceil-\sqrt{2},0\rceil  

 1,1\lceil-1,1\rceil  

 2,2\lceil-\sqrt{2},\sqrt{2}\rceil  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Podemos afirmar que as funções definidas por  f(x)=xsin2(2x) f\left(x\right)=-\frac{x}{\sin^2\left(2x\right)}\   e   g(x)=1tan(2x)g\left(x\right)=\frac{1}{\tan\left(2x\right)}  são

ambas pares.

ambas ímpares.

 ff  é par e  gg  é ímpar.

 g g\   é par e  ff  é ímpar.

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Os gráficos das funções  f(x)=2cos(2x)f\left(x\right)=-2\cos\left(2x\right)  e  g(x)=2sin(x2)g\left(x\right)=-2\sin\left(\frac{x}{2}\right)  , no intervalo  0,2π\lceil0,2\pi\rceil  intersetam-se no ponto de coordenadas

 (π2,2)\left(\frac{\pi}{2},2\right)  

 (π,2)\left(\pi,-2\right)  

 (π,2)\left(\pi,2\right)  

 (π2,2)\left(\frac{\pi}{2},-2\right)  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

O domínio da função definida por  h(x)=11cos(x2)h\left(x\right)=\frac{1}{1-\left|\cos\left(\frac{x}{2}\right)\right|}  é

 ZZ  

 RR  

 xR  x2kπ ,  kZx\in R\ \wedge\ x\ne2k\pi\ ,\ \ k\in Z  

 xR  x=2kπ , kZx\in R\ \wedge\ x=2k\pi\ ,\ k\in Z  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?