TRIGONOMETRIA

TRIGONOMETRIA

12th Grade

10 Qs

quiz-placeholder

Similar activities

Precalculus

Precalculus

11th - 12th Grade

13 Qs

Limit Fungsi Trigonometri

Limit Fungsi Trigonometri

12th Grade

10 Qs

GRAFIK FUNGSI TRIGONOMETRI

GRAFIK FUNGSI TRIGONOMETRI

10th - 12th Grade

10 Qs

Pre-Calculus Checkup on Solving Trig Equations

Pre-Calculus Checkup on Solving Trig Equations

10th - 12th Grade

10 Qs

HÀM SỐ LƯỢNG GIÁC

HÀM SỐ LƯỢNG GIÁC

12th Grade

12 Qs

Latihan Soal Turunan Fungsi Trigonometri

Latihan Soal Turunan Fungsi Trigonometri

12th Grade

10 Qs

Inverse Trig Compositions

Inverse Trig Compositions

9th - 12th Grade

12 Qs

Solving trig equations

Solving trig equations

10th - 12th Grade

10 Qs

TRIGONOMETRIA

TRIGONOMETRIA

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Fátima Morais

Used 43+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sabendo que

 sinα=45\sin\alpha=-\frac{4}{5}  e que  α3º Q\alpha\in3º\ Q  determine o valor exato de  cos(π4+α)\cos\left(\frac{\pi}{4}+\alpha\right)  .

 7210\frac{7\sqrt{2}}{10}  

 210\frac{\sqrt{2}}{10}  

 210-\frac{\sqrt{2}}{10}  

 25\frac{\sqrt{2}}{5}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Em R, as soluções da equação cos(2x)+cos(x)+1=0\cos\left(2x\right)+\cos\left(x\right)+1=0 são da forma

x=π2+kπ x=2π3+2kπ x=2π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=-\frac{2\pi}{3}+2k\pi\ ,\ k\in Z

x=π2+kπ x=2π3+2kπ x=5π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=\frac{5\pi}{3}+2k\pi\ ,\ k\in Z

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A função definida por f(x)=14+3cos(x5π4)f\left(x\right)=-\frac{1}{4}+3\cos\left(-\frac{x}{5}-\frac{\pi}{4}\right)  tem período positivo mínimo 


 2π rad2\pi\ rad  

 4π rad4\pi\ rad  

 π4 rad\frac{\pi}{4}\ rad  

 10π rad10\pi\ rad  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Qual é o contradomínio da função definida por  h(x)=22sin(2x)22h\left(x\right)=-\frac{\sqrt{2}}{2}\sin\left(2x\right)-\frac{\sqrt{2}}{2}  


 0,22\lceil0,\frac{\sqrt{2}}{2}\rceil  

 2,0\lceil-\sqrt{2},0\rceil  

 1,1\lceil-1,1\rceil  

 2,2\lceil-\sqrt{2},\sqrt{2}\rceil  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Podemos afirmar que as funções definidas por  f(x)=xsin2(2x) f\left(x\right)=-\frac{x}{\sin^2\left(2x\right)}\   e   g(x)=1tan(2x)g\left(x\right)=\frac{1}{\tan\left(2x\right)}  são

ambas pares.

ambas ímpares.

 ff  é par e  gg  é ímpar.

 g g\   é par e  ff  é ímpar.

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Os gráficos das funções  f(x)=2cos(2x)f\left(x\right)=-2\cos\left(2x\right)  e  g(x)=2sin(x2)g\left(x\right)=-2\sin\left(\frac{x}{2}\right)  , no intervalo  0,2π\lceil0,2\pi\rceil  intersetam-se no ponto de coordenadas

 (π2,2)\left(\frac{\pi}{2},2\right)  

 (π,2)\left(\pi,-2\right)  

 (π,2)\left(\pi,2\right)  

 (π2,2)\left(\frac{\pi}{2},-2\right)  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

O domínio da função definida por  h(x)=11cos(x2)h\left(x\right)=\frac{1}{1-\left|\cos\left(\frac{x}{2}\right)\right|}  é

 ZZ  

 RR  

 xR  x2kπ ,  kZx\in R\ \wedge\ x\ne2k\pi\ ,\ \ k\in Z  

 xR  x=2kπ , kZx\in R\ \wedge\ x=2k\pi\ ,\ k\in Z  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?