Python - Numpy Quiz 2

Python - Numpy Quiz 2

University - Professional Development

5 Qs

quiz-placeholder

Similar activities

C++ pointers

C++ pointers

University

8 Qs

DasProgWeb

DasProgWeb

University

7 Qs

RVS_Tech_quizz_even2024-25

RVS_Tech_quizz_even2024-25

University

10 Qs

PYTHON PROGRAMMING

PYTHON PROGRAMMING

University

10 Qs

Array 2: Unit 8

Array 2: Unit 8

University

6 Qs

Rapid Round 2

Rapid Round 2

University

10 Qs

JAVA array

JAVA array

12th Grade - University

10 Qs

RAM

RAM

7th Grade - University

10 Qs

Python - Numpy Quiz 2

Python - Numpy Quiz 2

Assessment

Quiz

Computers

University - Professional Development

Hard

Created by

Max Diender

Used 18+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

When using the NumPy random module, how can you return a random number from 0 to 100?

random.randint(100)

random.rand()

random.rand(100)

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

When using the NumPy random module, how can you return a Normal Data Distribution with 1000 numbers, concentrated around the number 50, with a standard deviation of 0.2?

random.normal(size=1000, normal=50, s=0.1)

random.normal(size=1000, mean=50, deviation=0.2)

random.normal(size=1000, loc=50, scale=0.2)

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

When using the NumPy random module, how can you randomly shuffle an array?


arr = np.array([1, 2, 3, 4, 5])

random.change(arr)

random.shuffle(arr)

random.rearrange(arr)

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

When using the NumPy random module, how can you make sure you always get the same result?

Use the random.seed() function to set a seed before running the other random functions

Use the random.static() function to set an answer before running your random functions

Use the random.change() function to change an answer before running your random functions

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

When using the NumPy random module, what is the probability of getting the value 6 to occur?


random.choice([1, 8, 4, 6], p=[0.2, 0.4, 0.3, 0.1], size=(100))

20%

40%

30%

10%