Limits RT

Limits RT

University

10 Qs

quiz-placeholder

Similar activities

Ejercicios de Clase: Límites Infinitos y Continuidad

Ejercicios de Clase: Límites Infinitos y Continuidad

University

13 Qs

L'Hopital's Rule Review

L'Hopital's Rule Review

11th Grade - Professional Development

10 Qs

UH1 12 IPA (B)

UH1 12 IPA (B)

University

10 Qs

Definition of Derivative

Definition of Derivative

11th Grade - University

10 Qs

ULANGAN HARIAN I MATEMATIKA PEMINATAN KELAS XII SMAN1 KRGTGH

ULANGAN HARIAN I MATEMATIKA PEMINATAN KELAS XII SMAN1 KRGTGH

12th Grade - University

10 Qs

Evaluating Trig Limits

Evaluating Trig Limits

12th Grade - University

9 Qs

Limit Trigonometri part1

Limit Trigonometri part1

11th Grade - University

10 Qs

Límites trigonométricos

Límites trigonométricos

12th Grade - University

10 Qs

Limits RT

Limits RT

Assessment

Quiz

Mathematics

University

Medium

Created by

Azfar haque

Used 17+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limt0 et  1t\lim_{t\rightarrow0}\ \frac{e^t\ -\ 1}{t}   

 ee   

1

 e2e^2   

 e1e^{-1}   

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limxa xm  amx  a=\lim_{x\rightarrow a}\ \frac{x^m\ -\ a^m}{x\ -\ a}=        

 mxm1mx^{m-1}   

 (m1) am\left(m-1\right)\ a^m   

 mam1ma^{m-1}   

 (m1) xm\left(m-1\right)\ x^m   

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limt0 e1t1e1t+1 =?, where t < 0;\lim_{t\rightarrow0}\ \frac{e^{\frac{1}{t}}-1}{e^{\frac{1}{t}}+1}\ =?,\ where\ t\ <\ 0;   

0

-1

1

Cannot be determine

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limt0 sin tot =\lim_{t\rightarrow0}\ \frac{\sin\ t^o}{t}\ =   

1

 π180\frac{\pi}{180}    

 73\frac{7}{3}   

0

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limx0 sin 7xsin 3x=\lim_{x\rightarrow0}\ \frac{\sin\ 7x}{\sin\ 3x}=  

1

 37\frac{3}{7}   

 73\frac{7}{3}   

0

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limx 4x45x3+2x23x5+2x2+1\lim_{x\rightarrow\infty}\ \frac{4x^4-5x^3+2x^2}{3x^5+2x^2+1}   

0

 43\frac{4}{3}   

 \infty   

-1

7.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

For what value of "k" the function h(x) = k,          x = 2x24x2,  x  2 h\left(x\right)\ =\ \int_{k,\ \ \ \ \ \ \ \ \ \ x\ =\ 2}^{\frac{x^2-4}{x-2},\ \ x\ ≠\ 2}\  is continuous at x = 2

 2

6

4

16

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?