Remainder Theorem

Remainder Theorem

10th - 11th Grade

10 Qs

quiz-placeholder

Similar activities

Online Maths Quiz

Online Maths Quiz

10th Grade - University

10 Qs

Makan minum kesukaan

Makan minum kesukaan

4th - 10th Grade

12 Qs

Matriks

Matriks

11th Grade

10 Qs

10th Mathematics AP part 2

10th Mathematics AP part 2

10th Grade

10 Qs

USAMOS LOS NÚMEROS ROMANOS

USAMOS LOS NÚMEROS ROMANOS

1st - 10th Grade

12 Qs

BAB 5 NISBAH TRIGONOMETRI

BAB 5 NISBAH TRIGONOMETRI

10th Grade

10 Qs

Vectores y rectas

Vectores y rectas

10th - 12th Grade

15 Qs

Himpunan 7a

Himpunan 7a

11th - 12th Grade

10 Qs

Remainder Theorem

Remainder Theorem

Assessment

Quiz

Mathematics

10th - 11th Grade

Practice Problem

Easy

CCSS
HSA.APR.B.2

Standards-aligned

Created by

judy sotelo

Used 8+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

DRAW QUESTION

3 mins • 5 pts

Find the remainder when

f(x)  =  x3 + 3x2 + 3x + 1

is divided by (x + 1).

Media Image

Answer explanation

Equate the divisor to zero. 

x + 1  =  0

Solve for x. 

x  =  -1

To find the remainder, substitute -1 for x into the function f(x). 

f(-1)  =  (-1)3 + 3(-1)2 + 3(-1) + 1

f(-1)  =  -1 + 3(1) - 3 + 1

f(-1)  =  -1 + 3 - 3 + 1

f(-1)  =  0

So, the remainder is 0.

Tags

CCSS.HSA.APR.B.2

2.

DRAW QUESTION

3 mins • 5 pts

Find the remainder when

f(x)  =  x3 - 3x + 1

is divided by (2 - 3x).

Media Image

Answer explanation

Equate the divisor to zero. 

2 - 3x  =  0

Solve for x. 

-3x  =  -2

x  =  2/3

To find the remainder, substitute 2/3 for x into the function f(x). 

f(2/3)  =  (2/3)3 - 3(2/3) + 1

f(2/3)  =  8/27 - 2 + 1

f(2/3)  =  8/27 - 1

f(2/3)  =  8/27 - 27/27

f(2/3)  =  (8 - 27)/27

f(2/3)  =  -19/27

So, the remainder is -19/27.

Tags

CCSS.HSA.APR.B.2

3.

DRAW QUESTION

3 mins • 5 pts

For what value of k is the polynomial

2x4 + 3x3 + 2kx2 + 3x + 6

is divisible by (x + 2).

Media Image

Answer explanation

Let

f(x)  =  2x4 + 3x3 + 2kx2 + 3x + 6

Here, the divisor is (x + 2). 

Equate the divisor to zero. 

x + 2  =  0

Solve for x. 

x  =  -2

To find the remainder, substitute -2 for x into the function f(x). 

f(-2)  =  2(-2)4 + 3(-2)3 + 2k(-2)2 + 3(-2) + 6

f(-2)  =  2(16) + 3(-8) + 2k(4) - 6 + 6

f(-2)  =  32 - 24 + 8k - 6 + 6

f(-2)  =  8 + 8k

So, the remainder is (8 + 8k).

If f(x) is exactly divisible by (x + 2), then the remainder must be zero.

Then, 

8 + 8k  =  0

Solve for k.

8k  =  -8

k  =  -1

Therefore, f(x) is exactly divisible by (x+2) when k  =  –1.

Tags

CCSS.HSA.APR.B.2

4.

DRAW QUESTION

3 mins • 5 pts

Show that (x + 2) is a factor of 

x3 - 4x2 - 2x + 20

Media Image

Answer explanation

Let

f(x)  =  x3 - 4x2 - 2x + 20

Equate the factor (x + 2) to zero.

x + 2  =  0

Solve for x. 

x  =  -2

By Factor Theorem,

(x + 2) is factor of f(x), if f(-2)  =  0

Then, 

f(-2)  =  (-2)3 - 4(-2)2 - 2(-2) + 20

f(-2)  =  -8 - 4(4) + 4 + 20

f(-2)  =  -8 - 16 + 4 + 20

f(-2)  =  0

Therefore, (x + 2) is a factor of x3 - 4x2 - 2x + 20. 

Tags

CCSS.HSA.APR.B.2

5.

DRAW QUESTION

3 mins • 5 pts

Is (3x - 2) a factor of 3x3 + x2 - 20x + 12 ?

Media Image

Answer explanation

Let

f(x)  =  3x3 + x2 - 20x + 12

Equate the factor (3x + 2) to zero.

3x - 2  =  0

Solve for x. 

3x  =  2

x  =  2/3

By Factor Theorem,

(3x - 2) is factor of f(x), if f(2/3)  =  0

Then, 

f(2/3)  =  3(2/3)3 + (2/3)2 - 20(2/3) + 12

f(2/3)  =  3(8/27) + 4/9 - 40/3 + 12

f(2/3)  =  8/9 + 4/9 - 40/3 + 12

f(2/3)  =  8/9 + 4/9 - 120/9 + 108/9

f(2/3)  =  (8 + 4 - 120 + 108) / 9

f(2/3)  =  (120 - 120) / 9

f(2/3)  =  0

Therefore, (3x - 2) is a factor of 3x3 + x2 - 20x + 12. 

Tags

CCSS.HSA.APR.B.2

6.

DRAW QUESTION

3 mins • 5 pts

Find the value of m, if (x - 2) is a factor of the polynomial

2x3 - 6x2 + mx + 4

Media Image

Answer explanation

Let

f(x)  =  2x3 - 6x2 + mx + 4

Equate the factor (x - 2) to zero.

x - 2  =  0

Solve for x. 

x  =  2

By Factor Theorem,

(x - 2) is factor of f(x), if f(2)  =  0

Then, 

f(2)  =  0

2(2)3 - 6(2)2 + m(2) + 4  =  0

f(2)  =  2(8) - 6(4) + 2m + 4  =  0

f(2)  =  16 - 24 + 2m + 4  =  0

f(2)  =  2m - 4  =  0

2m  =  4

m  =  2

Therefore (x - 2) is a factor of f(x), when m  =  2. 

Tags

CCSS.HSA.APR.B.2

7.

DRAW QUESTION

3 mins • 5 pts

Media Image

Answer explanation

f(3)=3(3)^3−4(3)^2+(3)−2

= 3(27) - 4(9) + 3 - 2

= 81-36 + 1

= 46

Tags

CCSS.HSA.APR.B.2

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?