Remainder Theorem

Remainder Theorem

10th - 11th Grade

10 Qs

quiz-placeholder

Similar activities

Polynomial Division

Polynomial Division

9th - 12th Grade

15 Qs

Polynomial Division, Remainder, and Factor Theorems

Polynomial Division, Remainder, and Factor Theorems

11th Grade

15 Qs

Synthetic Division

Synthetic Division

9th - 12th Grade

15 Qs

Ulangan Harian Matematika Minat "POLINOM"

Ulangan Harian Matematika Minat "POLINOM"

11th Grade

10 Qs

Remainder and Factor Theorems

Remainder and Factor Theorems

10th Grade

11 Qs

Quadratic Equation

Quadratic Equation

11th Grade

15 Qs

UH Polinomial

UH Polinomial

11th Grade

10 Qs

Synthetic Division

Synthetic Division

10th - 11th Grade

8 Qs

Remainder Theorem

Remainder Theorem

Assessment

Quiz

Mathematics

10th - 11th Grade

Easy

CCSS
HSA.APR.B.2

Standards-aligned

Created by

judy sotelo

Used 8+ times

FREE Resource

10 questions

Show all answers

1.

DRAW QUESTION

3 mins • 5 pts

Find the remainder when

f(x)  =  x3 + 3x2 + 3x + 1

is divided by (x + 1).

Media Image

Answer explanation

Equate the divisor to zero. 

x + 1  =  0

Solve for x. 

x  =  -1

To find the remainder, substitute -1 for x into the function f(x). 

f(-1)  =  (-1)3 + 3(-1)2 + 3(-1) + 1

f(-1)  =  -1 + 3(1) - 3 + 1

f(-1)  =  -1 + 3 - 3 + 1

f(-1)  =  0

So, the remainder is 0.

Tags

CCSS.HSA.APR.B.2

2.

DRAW QUESTION

3 mins • 5 pts

Find the remainder when

f(x)  =  x3 - 3x + 1

is divided by (2 - 3x).

Media Image

Answer explanation

Equate the divisor to zero. 

2 - 3x  =  0

Solve for x. 

-3x  =  -2

x  =  2/3

To find the remainder, substitute 2/3 for x into the function f(x). 

f(2/3)  =  (2/3)3 - 3(2/3) + 1

f(2/3)  =  8/27 - 2 + 1

f(2/3)  =  8/27 - 1

f(2/3)  =  8/27 - 27/27

f(2/3)  =  (8 - 27)/27

f(2/3)  =  -19/27

So, the remainder is -19/27.

Tags

CCSS.HSA.APR.B.2

3.

DRAW QUESTION

3 mins • 5 pts

For what value of k is the polynomial

2x4 + 3x3 + 2kx2 + 3x + 6

is divisible by (x + 2).

Media Image

Answer explanation

Let

f(x)  =  2x4 + 3x3 + 2kx2 + 3x + 6

Here, the divisor is (x + 2). 

Equate the divisor to zero. 

x + 2  =  0

Solve for x. 

x  =  -2

To find the remainder, substitute -2 for x into the function f(x). 

f(-2)  =  2(-2)4 + 3(-2)3 + 2k(-2)2 + 3(-2) + 6

f(-2)  =  2(16) + 3(-8) + 2k(4) - 6 + 6

f(-2)  =  32 - 24 + 8k - 6 + 6

f(-2)  =  8 + 8k

So, the remainder is (8 + 8k).

If f(x) is exactly divisible by (x + 2), then the remainder must be zero.

Then, 

8 + 8k  =  0

Solve for k.

8k  =  -8

k  =  -1

Therefore, f(x) is exactly divisible by (x+2) when k  =  –1.

Tags

CCSS.HSA.APR.B.2

4.

DRAW QUESTION

3 mins • 5 pts

Show that (x + 2) is a factor of 

x3 - 4x2 - 2x + 20

Media Image

Answer explanation

Let

f(x)  =  x3 - 4x2 - 2x + 20

Equate the factor (x + 2) to zero.

x + 2  =  0

Solve for x. 

x  =  -2

By Factor Theorem,

(x + 2) is factor of f(x), if f(-2)  =  0

Then, 

f(-2)  =  (-2)3 - 4(-2)2 - 2(-2) + 20

f(-2)  =  -8 - 4(4) + 4 + 20

f(-2)  =  -8 - 16 + 4 + 20

f(-2)  =  0

Therefore, (x + 2) is a factor of x3 - 4x2 - 2x + 20. 

Tags

CCSS.HSA.APR.B.2

5.

DRAW QUESTION

3 mins • 5 pts

Is (3x - 2) a factor of 3x3 + x2 - 20x + 12 ?

Media Image

Answer explanation

Let

f(x)  =  3x3 + x2 - 20x + 12

Equate the factor (3x + 2) to zero.

3x - 2  =  0

Solve for x. 

3x  =  2

x  =  2/3

By Factor Theorem,

(3x - 2) is factor of f(x), if f(2/3)  =  0

Then, 

f(2/3)  =  3(2/3)3 + (2/3)2 - 20(2/3) + 12

f(2/3)  =  3(8/27) + 4/9 - 40/3 + 12

f(2/3)  =  8/9 + 4/9 - 40/3 + 12

f(2/3)  =  8/9 + 4/9 - 120/9 + 108/9

f(2/3)  =  (8 + 4 - 120 + 108) / 9

f(2/3)  =  (120 - 120) / 9

f(2/3)  =  0

Therefore, (3x - 2) is a factor of 3x3 + x2 - 20x + 12. 

Tags

CCSS.HSA.APR.B.2

6.

DRAW QUESTION

3 mins • 5 pts

Find the value of m, if (x - 2) is a factor of the polynomial

2x3 - 6x2 + mx + 4

Media Image

Answer explanation

Let

f(x)  =  2x3 - 6x2 + mx + 4

Equate the factor (x - 2) to zero.

x - 2  =  0

Solve for x. 

x  =  2

By Factor Theorem,

(x - 2) is factor of f(x), if f(2)  =  0

Then, 

f(2)  =  0

2(2)3 - 6(2)2 + m(2) + 4  =  0

f(2)  =  2(8) - 6(4) + 2m + 4  =  0

f(2)  =  16 - 24 + 2m + 4  =  0

f(2)  =  2m - 4  =  0

2m  =  4

m  =  2

Therefore (x - 2) is a factor of f(x), when m  =  2. 

Tags

CCSS.HSA.APR.B.2

7.

DRAW QUESTION

3 mins • 5 pts

Media Image

Answer explanation

f(3)=3(3)^3−4(3)^2+(3)−2

= 3(27) - 4(9) + 3 - 2

= 81-36 + 1

= 46

Tags

CCSS.HSA.APR.B.2

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?