
kvadratické rovnice

Quiz
•
Mathematics
•
5th Grade
•
Hard
Martina Jiroušková
Used 1+ times
FREE Resource
10 questions
Show all answers
1.
MULTIPLE CHOICE QUESTION
2 mins • 1 pt
David se snaží vyřešit kvadratickou rovnici. Ví, že standardní forma kvadratické rovnice je jedna z následujících. Můžete mu pomoci identifikovat správnou formu?
x^2 + bx + c = 0
ax^2 + bx = c
ax^2 + bx + c = 0
ax^2 + bx + c = 1
Answer explanation
The standard form of a quadratic equation is 'ax^2 + bx + c = 0', where a, b, and c are constants. This equation represents a parabola when graphed in the x-y coordinate system. Hence, the correct form that David should use to solve his quadratic equation is 'ax^2 + bx + c = 0'.
2.
MULTIPLE CHOICE QUESTION
2 mins • 1 pt
Abigail, Oliver a Aiden se snaží vypustit domácí raketu. Výšku rakety jako funkci času modelují pomocí kvadratické rovnice. K čemu by použili diskriminant této rovnice?
K řešení koeficientů kvadratické rovnice, které představují počáteční výšku, počáteční rychlost a zrychlení v důsledku gravitace.
K nalezení času, kdy raketa dopadne na zem (průsečíky rovnice na ose x).
K výpočtu času, kdy raketa dosáhne své maximální výšky (vrchol paraboly).
K určení charakteru letové dráhy rakety (kořeny rovnice).
Answer explanation
The discriminant of a quadratic equation gives information about its roots. In the context of this question, where the rocket's height is modeled by a quadratic equation, the discriminant would be used to determine the character of the rocket's flight path. This aligns with the correct answer choice, which states that the discriminant is used to 'determine the character of the rocket's flight path (roots of the equation).'
3.
MULTIPLE CHOICE QUESTION
2 mins • 1 pt
Grace se snaží vyřešit kvadratickou rovnici a potřebuje najít kořeny rovnice. Daniel navrhuje použití vzorce. Který z následujících vzorců navržených Danielem je správný?
x = (b ± √(b^2 - 4ac)) / (2a)
x = (-b ± √(b^2 + 4ac)) / (2a)
x = (-b ± √(b^2 - 4ac)) / a
x = (-b ± √(b^2 - 4ac)) / (2a)
Answer explanation
The quadratic formula, used to find the roots of a quadratic equation, is x = (-b ± √(b^2 - 4ac)) / (2a). This formula calculates the roots by considering the coefficient of each term (a, b, c) in the quadratic equation. It's important to note the negative sign in front of 'b' and the subtraction '4ac' under the square root sign in the formula. Therefore, Daniel's correct suggestion is x = (-b ± √(b^2 - 4ac)) / (2a).
4.
MULTIPLE CHOICE QUESTION
2 mins • 1 pt
Jak určíte počet řešení kvadratické rovnice pomocí diskriminantu?
Nalezením vrcholu paraboly
Vyřešením kvadratické rovnice
Analyzováním hodnoty diskriminantu
Výpočtem průměru kořenů
Answer explanation
The number of solutions of a quadratic equation can be determined by analyzing the value of the discriminant. If the discriminant is positive, the equation has two distinct solutions. If it's zero, the equation has one solution. If it's negative, the equation has no real solutions. Hence, the correct answer is 'Analyzing the value of the discriminant'.
5.
MULTIPLE CHOICE QUESTION
2 mins • 1 pt
James se snažil vypočítat, kolik jablek by mu zbylo, poté co některé dal svým přátelům. Uvědomil si, že situaci lze reprezentovat kvadratickou rovnicí: x^2 + 5x + 6 = 0. Jaké jsou možné hodnoty x?
x = -1, -6
x = 4, 5
x = -2, -3
x = 2, 3
Answer explanation
The question is asking to solve a quadratic equation. For the given equation (x^2 + 5x + 6 = 0) to hold true, the roots for the value of x must be -2, -3. Thus, the correct choice is 'x = -2, -3'.
6.
MULTIPLE CHOICE QUESTION
3 mins • 1 pt
Noah se snaží vyřešit kvadratickou rovnici, aby zjistil, kolik jablek (x) potřebuje koupit pro školní projekt. Rovnice je x^2 - 9x + 20 = 0. Můžete mu pomoci tuto rovnici faktorizovat?
(x + 2)(x + 10) = 0
(x - 2)(x - 10) = 0
(x + 4)(x + 5) = 0
(x - 4)(x - 5) = 0
Answer explanation
The equation x^2 - 9x + 20 = 0 can be factored into (x - 4)(x - 5) = 0. The goal is to find two numbers that add to -9 (the coefficient of x) and multiply to 20 (the constant term). The numbers -4 and -5 meet these conditions, hence the correct factored form of the equation.
7.
MULTIPLE CHOICE QUESTION
3 mins • 1 pt
Ethan se snaží vypočítat počet jablek (x), které bude mít po tom, co některé dá Isla a Abigail. Vymyslel rovnici: 2x^2 - 3x - 2 = 0. Jaké je řešení Ethanovy rovnice?
x = -1, 1
x = 1, 2
x = -2, 1
x = -1, 2
Answer explanation
The solution to Ethan's equation, 2x^2 - 3x - 2 = 0, can be found by factoring and solving for x. Factoring the quadratic equation gives us (2x+1)(x-2) = 0. When the product of 2 factors equals 0, at least one of the factors must be 0. Therefore, the solutions for x can be found by setting each factor equal to 0 and solving for x. Doing this, we get x = -1 and x = 2.
Create a free account and access millions of resources
Similar Resources on Wayground
12 questions
Toán 5

Quiz
•
5th - 6th Grade
7 questions
Kvadratické rovnice 2

Quiz
•
5th Grade
9 questions
Rovnice

Quiz
•
5th Grade
10 questions
Jednoduché rovnice

Quiz
•
5th - 8th Grade
10 questions
Pamětné násobení a dělení

Quiz
•
1st - 5th Grade
10 questions
Review: Prime Factorization

Quiz
•
4th - 6th Grade
14 questions
Function Tables

Quiz
•
4th - 5th Grade
11 questions
Graphing Quadratics in Vertex Form

Quiz
•
5th Grade
Popular Resources on Wayground
12 questions
Unit Zero lesson 2 cafeteria

Lesson
•
9th - 12th Grade
10 questions
Nouns, nouns, nouns

Quiz
•
3rd Grade
10 questions
Lab Safety Procedures and Guidelines

Interactive video
•
6th - 10th Grade
25 questions
Multiplication Facts

Quiz
•
5th Grade
11 questions
All about me

Quiz
•
Professional Development
20 questions
Lab Safety and Equipment

Quiz
•
8th Grade
13 questions
25-26 Behavior Expectations Matrix

Quiz
•
9th - 12th Grade
10 questions
Exploring Digital Citizenship Essentials

Interactive video
•
6th - 10th Grade
Discover more resources for Mathematics
25 questions
Multiplication Facts

Quiz
•
5th Grade
10 questions
Rounding Decimals

Quiz
•
5th Grade
20 questions
Finding Volume of Rectangular Prisms

Quiz
•
5th Grade
20 questions
Place Value, Decimal Place Value, and Rounding

Quiz
•
5th Grade
20 questions
Decimals Place Value to the Thousandths

Quiz
•
5th Grade
20 questions
Adding and Subtracting Decimals

Quiz
•
5th Grade
14 questions
Volume of Rectangular Prism

Quiz
•
5th Grade
101 questions
Multiplication Facts

Quiz
•
5th Grade