Basics of Machine Learning

Basics of Machine Learning

University

11 Qs

quiz-placeholder

Similar activities

Supervised & UnSupervised & Reinforcement Learning

Supervised & UnSupervised & Reinforcement Learning

University

14 Qs

Introduction to Machine Learning

Introduction to Machine Learning

University

12 Qs

Ai Chapter 4 (2122-1) Quiz 3

Ai Chapter 4 (2122-1) Quiz 3

University

10 Qs

Hari 3 - Kuis Coding & Perkenalan AI

Hari 3 - Kuis Coding & Perkenalan AI

University

10 Qs

The CV Drive

The CV Drive

University

14 Qs

#Sg_Spaic Last season Quiz (ML and Python)

#Sg_Spaic Last season Quiz (ML and Python)

KG - Professional Development

10 Qs

FMSF86/FMSF90 Statistical learning

FMSF86/FMSF90 Statistical learning

University

16 Qs

K-Nearest Neighbors Quiz

K-Nearest Neighbors Quiz

University

10 Qs

Basics of Machine Learning

Basics of Machine Learning

Assessment

Quiz

Other

University

Easy

Created by

Aditi Rao

Used 1+ times

FREE Resource

11 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is machine learning?

Machine learning is a method of data analysis that automates analytical model building.

Machine learning is a programming language for software development.

Machine learning is a type of hardware used for data storage.

Machine learning is a process of manual data entry and analysis.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Name one common application of machine learning.

Data cleaning

Recommendation systems

Image formation

data processing

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the difference between supervised and unsupervised learning?

Supervised learning is used for clustering, while unsupervised learning is used for classification.

Supervised learning uses labeled data for training, while unsupervised learning uses unlabeled data to find patterns.

Supervised learning requires no data for training, while unsupervised learning requires labeled data.

Supervised learning is faster than unsupervised learning regardless of data size.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is a dataset in the context of machine learning?

A dataset is a structured collection of data used for training and testing machine learning models.

A dataset is a random collection of data points without any structure.

A dataset is a type of algorithm used in machine learning.

A dataset is a single data point used for making predictions.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is a feature in machine learning?

A feature is the output of a machine learning model.

A feature is a type of machine learning algorithm.

A feature is an individual measurable property or characteristic used as input for a machine learning model.

A feature is a dataset used for training a model.

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Explain the term 'training' in machine learning.

Training involves only testing the model's performance.

Training is the process of collecting data for analysis.

Training is the final step before deploying a model.

Training in machine learning is the process of teaching a model to learn from data by adjusting its parameters.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What role does a model play in machine learning?

A model in machine learning is used to make predictions or decisions based on input data.

A model is used to store data permanently.

A model helps in data cleaning and preprocessing.

A model is primarily for visualizing data trends.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?