Ensemble Learning

Ensemble Learning

University

20 Qs

quiz-placeholder

Similar activities

Machine Learning

Machine Learning

University

20 Qs

Season 5 #Spaic Machine learning Weekly Quiz

Season 5 #Spaic Machine learning Weekly Quiz

KG - Professional Development

20 Qs

Tematik rendah

Tematik rendah

University

15 Qs

Pemodelan & Simulasi Sistem PRAK

Pemodelan & Simulasi Sistem PRAK

University

21 Qs

Machine Learning Pipeline and Models Quiz

Machine Learning Pipeline and Models Quiz

University

20 Qs

Bagging and Boosting

Bagging and Boosting

University

15 Qs

Round - 3 ( Technical round )

Round - 3 ( Technical round )

University

20 Qs

Season 6 #Spaic ML 2 Weekly Quiz

Season 6 #Spaic ML 2 Weekly Quiz

KG - Professional Development

20 Qs

Ensemble Learning

Ensemble Learning

Assessment

Quiz

Other

University

Easy

Created by

hajiar yuliana

Used 3+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Apakah tujuan dari ensemble learning?

Mempercepat proses learning

Meningkatkan performansi

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Cara kerja ensemble learning adalah dengan .....

Mengkombinasikan beberapa model

Mencari setting parameter yang paling optimal

Memilih example yang paling tepat pada data training

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Karakteristik Bias Error adalah ....

Error pada training tinggi dan error pada test juga tinggi

Error pada training rendah sementara error pada test tingi

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bagaimana cara kerja metode Bagging sehingga dapat menurunkan Variance Error tanpa meningkatkan Bias Error?

Mengurangi jumlah example pada training set

Menambah kompleksitas model, misal dengan menambah hidden unit pada Artificial Neural Network

Average the models

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Manakah dari berikut ini yang merupakan metode utama dalam Ensemble Learning?

CNN, RNN, LSTM

Supervised, Unsupervised, Reinforcement

Clustering, Regression, Classification

Bagging, Boosting, Stacking

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Apa tujuan utama dari Bagging dalam Ensemble Learning?

Mengurangi bias

Mengurangi varians

Meningkatkan kecepatan pelatihan model

Meningkatkan overfitting

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Algoritma apa yang paling sering digunakan dalam metode Bagging?

Decision Tree

Support Vector Machine

Naïve Bayes

K-Means

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?