Mid-2 DE ( major& minor)

Mid-2 DE ( major& minor)

University

15 Qs

quiz-placeholder

Similar activities

Ecuaciones Segundo Orden Intro

Ecuaciones Segundo Orden Intro

University

11 Qs

Integration by Parts

Integration by Parts

10th Grade - University

10 Qs

LDE

LDE

University

10 Qs

3.2 Inverse Laplace Transform

3.2 Inverse Laplace Transform

University

20 Qs

Constant Coefficient Linear Homogeneous 2nd Order ODEs

Constant Coefficient Linear Homogeneous 2nd Order ODEs

University

17 Qs

Differential Equation

Differential Equation

University

20 Qs

Диференціальні рівняння

Диференціальні рівняння

University

10 Qs

EM I - PET II

EM I - PET II

University

20 Qs

Mid-2 DE ( major& minor)

Mid-2 DE ( major& minor)

Assessment

Quiz

Mathematics

University

Medium

Created by

Aruna Sadasivuni

Used 2+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Solve the equation y''' - 3y'' + 2y = 0.

y(t) = C1*e^(t) + C2*e^(2t)

y(t) = C1*e^(-t) + C2*e^(-2t) + C3

y(t) = C1*e^(2t) + C2*e^(t) + C3*e^(t)

y(t) = C1*e^(3t) + C2*e^(t) + C3

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the general solution of y'''' + 4y'' = 0.

y(t) = C1 + C2*t + C3*e^(2t) + C4*e^(-2t)

y(t) = C1 + C2*t + C3*cos(2t) + C4*sin(2t)

y(t) = C1 + C2*t^2 + C3*cos(t) + C4*sin(t)

y(t) = C1 + C2*t + C3*cos(3t) + C4*sin(3t)

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Determine the particular solution for y'' + 5y' + 6y = e^x.

y_p = (1/6)e^x

y_p = (1/24)e^x

y_p = (1/12)e^x

y_p = (1/3)e^x

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Solve the differential equation y'' - 4y' + 4y = 0 with initial conditions y(0) = 1, y'(0) = 0.

y(t) = (1 - t)e^(2t)

y(t) = e^(2t)

y(t) = (1 + t)e^(2t)

y(t) = t^2e^(2t)

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the complementary function of y'' + 2y' + y = 0.

y_c = C1 * e^(-x) + C2 * x * e^(-x)

y_c = C1 * e^(-2x) + C2 * e^(-x)

y_c = C1 * x + C2 * x^2

y_c = C1 * e^(x) + C2 * x * e^(x)

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Solve the equation y''' + 2y'' - y' - 2y = 0.

y(t) = C1 * e^(t) + C2 * e^(2t) + C3 * e^(-t)

y(t) = C1 * e^(-t) + C2 * e^(-2t) + C3 * e^(t)

y(t) = C1 * e^(2t) + C2 * e^(-t) + C3 * e^(t)

y(t) = C1 * e^(t) + C2 * e^(-t) + C3 * e^(-2t)

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Determine the general solution for y'''' - 2y'' = 0.

y(t) = C1 + C2*t^2 + C3*e^(2t) + C4*e^(-2t)

y(t) = C1 + C2*ln(t) + C3*t^2 + C4*e^(t)

y(t) = C1 + C2*t + C3*e^(sqrt(2)t) + C4*e^(-sqrt(2)t)

y(t) = C1*e^(sqrt(2)t) + C2*e^(-sqrt(2)t)

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?