UNSUPERVISED LEARNING

UNSUPERVISED LEARNING

University

15 Qs

quiz-placeholder

Similar activities

Session 02

Session 02

University

15 Qs

IS 251

IS 251

University

10 Qs

Khám Phá Nghề Nghiệp Trong Tin Học

Khám Phá Nghề Nghiệp Trong Tin Học

8th Grade - University

10 Qs

Tin 11 Bài 10 KNTT

Tin 11 Bài 10 KNTT

11th Grade - University

20 Qs

Kiểm tra kiến thức về SQL

Kiểm tra kiến thức về SQL

11th Grade - University

15 Qs

Quiz về Kiểu Dữ Liệu List và Set (1)

Quiz về Kiểu Dữ Liệu List và Set (1)

7th Grade - University

15 Qs

Bài 3.1: Trắc nghiệm phần 2

Bài 3.1: Trắc nghiệm phần 2

University

10 Qs

01mcb

01mcb

12th Grade - University

15 Qs

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING

Assessment

Quiz

Information Technology (IT)

University

Medium

Created by

LONG BẢO

Used 2+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Khác biệt chính giữa học có giám sát (supervised learning) và học không giám sát (unsupervised learning) là gì?

A. Học không giám sát luôn cho kết quả chính xác hơn học có giám sát

B. Học có giám sát không cần dữ liệu đầu vào

C. Học không giám sát không yêu cầu dữ liệu gán nhãn trong khi học có giám sát cần dữ liệu có nhãn

D. Học không giám sát chỉ áp dụng cho dữ liệu hình ảnh

2.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Trong các ví dụ sau, đâu là một ứng dụng tiêu biểu của học không giám sát?

A. Phân nhóm khách hàng theo hành vi tiêu dùng

B. Phân loại email là spam hay không spam

C. Dự đoán giá cổ phiếu trong tương lai dựa trên dữ liệu lịch sử

D. Nhận diện chữ viết tay từ hình ảnh

3.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Mục tiêu chính của unsupervised learning là gì?

A. Dự đoán đầu ra chính xác dựa trên đầu vào mới

B. Khám phá các mẫu ẩn và cấu trúc trong dữ liệu không có nhãn

C. Tối ưu hóa hàm mất mát dựa trên dữ liệu được gán nhãn

D. So sánh độ chính xác giữa các mô hình học sâu

4.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Trong thuật toán DBSCAN, điểm nào sau đây là điểm biên (border point)?

A. Một điểm nằm ngoài cụm và không có lân cận

B. Một điểm có đủ số điểm trong bán kính Eps để trở thành điểm lõi

C. Một điểm nằm trong vùng lân cận của điểm lõi nhưng không đủ điểm để trở thành điểm lõi

D. Một điểm được chọn làm trung tâm cụm trong K-Means

5.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt


Điểm khác biệt chính giữa K-Means và Hierarchical Clustering là gì?

A. K-Means không cần biết trước số cụm, còn Hierarchical Clustering thì cần

B. Hierarchical Clustering chỉ hoạt động với dữ liệu có nhãn

C. Hierarchical Clustering luôn cho kết quả chính xác hơn K-Means

D. K-Means yêu cầu xác định trước số cụm, còn Hierarchical Clustering thì không

6.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Mục tiêu chính của phương pháp PCA trong giảm chiều dữ liệu là gì?

A. Giảm số chiều bằng cách giữ nguyên toàn bộ đặc trưng gốc

B. Bảo toàn cấu trúc cục bộ giữa các điểm dữ liệu

C. Tối đa hóa phương sai của dữ liệu trong không gian mới

D. Trực quan hóa dữ liệu tốt hơn so với các phương pháp khác

7.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

So với t-SNE, UMAP có điểm mạnh nào sau đây?

A. Tốc độ nhanh hơn và bảo toàn được cả cấu trúc cục bộ lẫn toàn cục

B. Có thể giải thích dễ dàng hơn về mặt thống kê

C. Giữ được nhiều phương sai hơn trong dữ liệu

D. Không cần điều chỉnh bất kỳ tham số nào

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?