Practical Data Science using Python - Random Forest - Model Building and Hyperparameter Tuning using Grid Search CV

Practical Data Science using Python - Random Forest - Model Building and Hyperparameter Tuning using Grid Search CV

Assessment

Interactive Video

Information Technology (IT), Architecture, Social Studies, Other

University

Hard

Created by

Wayground Content

FREE Resource

The video tutorial explains the use of a random forest classifier to predict credit defaults. It begins with an introduction to the problem of predicting whether a borrower will default on a loan. The tutorial then covers data preparation, including splitting data into training and test sets, and building a random forest model. The model's performance is evaluated, achieving an accuracy of 82%. The tutorial concludes with a discussion on hyperparameter tuning to prevent overfitting, using techniques like grid search and cross-validation.

Read more

1 questions

Show all answers

1.

OPEN ENDED QUESTION

3 mins • 1 pt

What new insight or understanding did you gain from this video?

Evaluate responses using AI:

OFF

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?