Proof by Induction

Proof by Induction

11th - 12th Grade

6 Qs

quiz-placeholder

Similar activities

Tes Induksi Matematika - SMANLY XI IPS 12345 dan XI Bahasa

Tes Induksi Matematika - SMANLY XI IPS 12345 dan XI Bahasa

11th Grade

10 Qs

Induksi Matematika

Induksi Matematika

11th Grade

10 Qs

Sigma Notation

Sigma Notation

11th Grade

10 Qs

Easy Factoring!

Easy Factoring!

11th Grade

10 Qs

INDUKSI MATEMATIKA (P.B.Deret Bilangan)

INDUKSI MATEMATIKA (P.B.Deret Bilangan)

11th Grade

8 Qs

SEQUENCES AND SERIES

SEQUENCES AND SERIES

11th Grade

11 Qs

Sequences & Series

Sequences & Series

9th - 12th Grade

10 Qs

Notasi Sigma

Notasi Sigma

11th Grade

10 Qs

Proof by Induction

Proof by Induction

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

CCSS
HSF.IF.A.2

Standards-aligned

Used 338+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image
According to the principle of mathematical induction, to prove a statement that is asserted about every natural number n, there are two things to prove. What is the first?
The statement is true for n = 1.
The statement is true for n = k.
The statement is true for n = k+1.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image
According to the principle of mathematical induction, to prove a statement that is asserted about every natural number n, there are two things to prove. What is the second?
The statement is true for n = k+1.
If the statement is true for n = k, then it will be true for its successor, k + 1.
The statement is true for n = 1.
The statement is true for n = k.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image
The second part (If the statement is true for n = k, then it will be true for its successor, k + 1) contains the induction assumption. What is it?
If the statement is true for n = k, then it will be true for its successor, k + 1.
The statement is true for n = k.
The statement is true for n = k+1.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image
The sum of the first n odd numbers is equal to the nth square. 
1 + 3 + 5 + 7 + . . . + (2n − 1) = n2

To prove this by mathematical induction, what will be the induction
 assumption?
The statement is true for n = k:
1 + 3 + 5 + 7 + . . . + (2k − 1) = k2
The statement is true for n = 1:
2x1 − 1 = 12
The statement is true for n = k + 1:
1 + 3 + 5 + 7 + . . . + (2k − 1) + (2k + 1) = (k + 1)2

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image
1 + 3 + 5 + 7 + . . . + (2n − 1) = n2
On the basis of this assumption,
[The statement is true for n = k:
1 + 3 + 5 + 7 + . . . + (2k − 1) = k2]
What must we show?
The statement is true for n = 1:
2x1 − 1 = 12
The statement is true for n = k:
1 + 3 + 5 + 7 + . . . + (2k − 1) = k2
The statement is true for n = k + 1:
1 + 3 + 5 + 7 + . . . + (2k − 1) + (2k + 1) = (k + 1)2

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image
Let S(n) = 2n − 1. Evaluate: 
a)  S(k)
b)  S(k + 1)
a)  S(k)  = 2k − 1
b)  S(k + 1) = 2n + 1
a)  S(k)  = 2k + 1
b)  S(k + 1) = 2k + 1
a)  S(k)  = 2k − 1
b)  S(k + 1) = 2k + 1

Tags

CCSS.HSF.IF.A.2