I.2. Common derivatives (Review of Derivatives)

I.2. Common derivatives (Review of Derivatives)

12th Grade

14 Qs

quiz-placeholder

Similar activities

Applications of Derivatives Review

Applications of Derivatives Review

10th Grade - University

12 Qs

Operation and Composition of Functions

Operation and Composition of Functions

9th - 12th Grade

15 Qs

Function Operations and Compositions

Function Operations and Compositions

9th - 12th Grade

15 Qs

Practice: Exponential Function Graphs

Practice: Exponential Function Graphs

9th - 12th Grade

18 Qs

Evaluating and Operations with Functions

Evaluating and Operations with Functions

9th - 12th Grade

12 Qs

derivatives review 11.01

derivatives review 11.01

11th - 12th Grade

13 Qs

Operations with Functions and Composition of Functions

Operations with Functions and Composition of Functions

11th - 12th Grade

14 Qs

Basic Derivatives - Part 1

Basic Derivatives - Part 1

10th - 12th Grade

16 Qs

I.2. Common derivatives (Review of Derivatives)

I.2. Common derivatives (Review of Derivatives)

Assessment

Quiz

Mathematics

12th Grade

Medium

Created by

Leo Crisologo

Used 27+ times

FREE Resource

14 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of  f(x)=cf\left(x\right)=c  , where  cc   is a constant.

 f(x)=0f'\left(x\right)=0  

 f(x)=cf'\left(x\right)=c  

 f(x)=1f'\left(x\right)=1  

 f(x)=cxf'\left(x\right)=cx  

2.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Find the derivative of f(x)=xnf\left(x\right)=x^n   .

 f(x)=nxf'\left(x\right)=nx  

 f(x)=nxn+1f'\left(x\right)=nx^{n+1}  

 f(x)=nxn1f'\left(x\right)=nx^{n-1}  

 f(x)=xn1f'\left(x\right)=x^{n-1}  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the derivative of  cf(x)c\cdot f\left(x\right)  , where  cc  is a constant?

 00  

 cc  

 cf(x)c\cdot f'\left(x\right)  

 f(x)f'\left(x\right)  

4.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

What is the derivative of the function  (f+g)(x)?\left(f+g\right)\left(x\right)?  

 f(x)+g(x)f'\left(x\right)+g'\left(x\right)  

 f(x)g(x)f'\left(x\right)-g'\left(x\right)  

 f(x)g(x)+f(x)g(x)f'\left(x\right)\cdot g\left(x\right)+f\left(x\right)\cdot g'\left(x\right)  

 f(x)g(x)f(x)g(x)f'\left(x\right)\cdot g\left(x\right)-f\left(x\right)\cdot g'\left(x\right)  

5.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The product rule: What is the derivative of (fg)(x)?\left(f\cdot g\right)\left(x\right)?  

 f(x)g(x)f'\left(x\right)\cdot g'\left(x\right)  

 f(x)g(x)+f(x)g(x)f'\left(x\right)\cdot g\left(x\right)+f\left(x\right)\cdot g'\left(x\right)  

6.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

The quotient rule: What is the derivative of (fg)(x)?\left(\frac{f}{g}\right)\left(x\right)?  

 f(x)g(x)f(x)g(x)\frac{f'\left(x\right)\cdot g\left(x\right)}{f\left(x\right)\cdot g'\left(x\right)}  

 f(x)g(x)\frac{f'\left(x\right)}{g'\left(x\right)}  

 g(x)f(x)f(x)g(x)(g(x))2\frac{g\left(x\right)\cdot f'\left(x\right)-f\left(x\right)\cdot g'\left(x\right)}{\left(g\left(x\right)\right)^2}  

7.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

In the questions above, what did we assume about the functions  ff   and g?g?  

They are both continuous

They are both differentiable

They are not equal

Neither are constant functions

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?