Funkcja wykładnicza i logarytmiczna - Tobl - 1HSP

Funkcja wykładnicza i logarytmiczna - Tobl - 1HSP

1st Grade

15 Qs

quiz-placeholder

Similar activities

BAB 5: UNGKAPAN ALGEBRA

BAB 5: UNGKAPAN ALGEBRA

1st - 12th Grade

15 Qs

रांझणी जी एस             8 सप्टेंबर 2020

रांझणी जी एस 8 सप्टेंबर 2020

1st - 8th Grade

20 Qs

KUIZ MATEMATIK UAR TAHAP 1 (MINGGU 21)

KUIZ MATEMATIK UAR TAHAP 1 (MINGGU 21)

1st - 12th Grade

10 Qs

Бір айнымалысы бар сызықтық теңсіздіктерді шешуді үйрену

Бір айнымалысы бар сызықтық теңсіздіктерді шешуді үйрену

1st Grade

10 Qs

Operacions amb monomis 1r ESO

Operacions amb monomis 1r ESO

1st Grade

10 Qs

PHÉP CỘNG PHÂN SỐ

PHÉP CỘNG PHÂN SỐ

1st Grade

10 Qs

Chapter 2: Standard Form

Chapter 2: Standard Form

1st - 3rd Grade

20 Qs

CALCULO MENTAL SEXTO GRADO

CALCULO MENTAL SEXTO GRADO

1st - 5th Grade

10 Qs

Funkcja wykładnicza i logarytmiczna - Tobl - 1HSP

Funkcja wykładnicza i logarytmiczna - Tobl - 1HSP

Assessment

Quiz

Mathematics

1st Grade

Practice Problem

Medium

Created by

Anna Niewulis

Used 29+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Interpretacją geometryczną równania  2x1=5x2^x-1=5-\left|x\right|  jest:

Media Image
Media Image
Media Image
Media Image

2.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Media Image

Na rysunku przedstawiono interpretację równania

  (12)(x+1)2=2\left(\frac{1}{2}\right)^{\left(x+1\right)}-2=2  

 2(x+1)2=22^{\left(x+1\right)}-2=2  

 2(x1)2=22^{\left(x-1\right)}-2=2  

 (12)(x1)2=2\left(\frac{1}{2}\right)^{\left(x-1\right)}-2=2  

3.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Media Image

Zaznacz wszystkie prawidłowe odpowiedzi.

Wykres funkcji    y=g(x)y=g\left(x\right)    powstał z przesunięcia wykresu    f(x)f\left(x\right)  funkcji o wektor   [2,2]\left[2,2\right]  .

Wykres funkcji   y=h(x)y=h\left(x\right)  powstał z przesunięcia wykresu funkcji   f(x)f\left(x\right)  o wektor   [2, 2]\left[-2,\ -2\right] .

Asymptotą funkcji    y=h(x)y=h\left(x\right)  jest prosta  y=2y=2  

Zbiorem wartości wszystkich funkcji jest zbiór liczb rzeczywistych

Funkcja  y=g(x)   y=g\left(x\right)\ \ \   jest funkcją rosnącą

4.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Media Image

Zaznacz wszystkie prawidłowe odpowiedzi

Rozwiązaniem równania  f(x)=g(x)f\left(x\right)=g\left(x\right)  jest punkt   (3, 2)\left(-3,\ 2\right)  

Rozwiązaniem nierówności  f(x)>g(x)f\left(x\right)>g\left(x\right)  jest przedział   (3, +)\left(-3,\ +\infty\right)  

Funkcja   y=g(x)y=g\left(x\right)  jest rosnąca

Rozwiązaniem nierówności  g(x)<f(x)g\left(x\right)<f\left(x\right)  jest przedział   (, 3)\left(-\infty,\ -3\right)  

5.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Dana jest funkcja  y=ax y=a^{x\ } , gdzie  a>0      i     a1a>0\ \ \ \ \ \ i\ \ \ \ \ a\ne1  .

Zaznacz wszystkie błędne odpowiedzi

Dziedziną funkcji jest przedział   [0, +)\left[0,\ +\infty\right)  

Zbiorem wartości jest przedział   (0, +)\left(0,\ +\infty\right)  

Funkcja rośnie, gdy   a>0a>0  

Funkcja maleje, gdy  a(0, 1)a\in\left(0,\ 1\right)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 Funkcją logarytmiczną nazywamy funkcję postaci    y=logaxy=\log_ax , gdzie   a(0,1) (1, +)a\in\left(0,1\right)\ \cup\left(1,\ +\infty\right)  oraz    x>0x>0  

PRAWDA

FAŁSZ

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Dana jest funkcja logarytmiczna   g(x)=log2(x3)+3g\left(x\right)=\log_2\left(x-3\right)+3  

Funkcja   g(x)g\left(x\right)     powstaje z przesunięcia funkcji     f(x)=log2xf\left(x\right)=\log_2x  o wektor  [3, 3]\left[3,\ -3\right]  

Funkcja   g(x)g\left(x\right)     powstaje z przesunięcia funkcji     f(x)=log⁡2xf\left(x\right)=\log_2x  o wektor  [3,3]\left[3,3\right]  

Funkcja   g(x)g\left(x\right)     powstaje z przesunięcia funkcji     f(x)=log⁡2xf\left(x\right)=\log_2x  o wektor  [3,3]\left[-3,-3\right]  

Funkcja   g(x)g\left(x\right)     powstaje z przesunięcia funkcji     f(x)=log⁡2xf\left(x\right)=\log_2x  o wektor  [3,3]\left[-3,3\right]  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?