Search Header Logo

Intro to Integration Review

Authored by Susan Thompson

Mathematics

10th - 12th Grade

20 Questions

CCSS covered

Used 39+ times

Intro to Integration Review
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The area under a curve is calculated using which mathematical concept?

your aunt derivative

indefinite integral

definite integral

derivative

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The fundamental theorem of calculus is basically:

calculating the area under a curve

 ab f(x) dx=F(b)F(a)\int_a^b\ f\left(x\right)\ dx=F\left(b\right)-F\left(a\right) 

integrating a function, with no +C

using rectangles to approximate the area under a curve

we didn't learn this!

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The result of  02(x22x+1) dx\int_0^2\left(x^2-2x+1\right)\ dx  is:

positive

negative

zero

Tags

CCSS.HSA.SSE.A.1

CCSS.HSA.APR.A.1

CCSS.HSA.REI.B.4

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The result of  13(x2) dx\int_1^3\left(x-2\right)\ dx  is:

positive

negative

zero

Tags

CCSS.HSA.SSE.A.1

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The result of  02(x32x2x+1) dx\int_0^2\left(x^3-2x^2-x+1\right)\ dx  is:

positive

negative

zero

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Integrate  x\sqrt{x}  with respect to x

 x12+cx^{\frac{1}{2}}+c  

 12x12+ c\frac{1}{2}x^{-\frac{1}{2}}+\ c  

 23x32+ c\frac{2}{3}x^{\frac{3}{2}}+\ c  

 32x32+ c\frac{3}{2}x^{\frac{3}{2}}+\ c  

Tags

CCSS.HSN.RN.A.2

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 8x3dx\int8x^{-3}dx  

 2x4+C-2x^{-4}+C  

 4x3+C4x^{-3}+C  

 83x2\frac{8}{-3}x^{-2}  

 4x2+C-4x^{-2}+C  

Tags

CCSS.7.EE.A.1

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?