Простейшие тригонометрические неравенства 10А

Простейшие тригонометрические неравенства 10А

10th Grade

5 Qs

quiz-placeholder

Similar activities

phương trình lượng giác cơ bản

phương trình lượng giác cơ bản

1st - 12th Grade

10 Qs

สอบเก็บคะแนน1/บทที่2 จำนวนตรรกยะและอตรรกยะ(403)

สอบเก็บคะแนน1/บทที่2 จำนวนตรรกยะและอตรรกยะ(403)

10th Grade

10 Qs

Ánh Huệ

Ánh Huệ

10th - 12th Grade

10 Qs

Тригонометриялық теңдеулер

Тригонометриялық теңдеулер

10th Grade

10 Qs

Ecuații trigonometrice

Ecuații trigonometrice

10th Grade

10 Qs

Қарапайым тригонометриялық теңсіздік

Қарапайым тригонометриялық теңсіздік

10th Grade

6 Qs

Trigonometri Kelas 10

Trigonometri Kelas 10

10th - 12th Grade

10 Qs

Простейшие тригонометрические неравенства 10А

Простейшие тригонометрические неравенства 10А

Assessment

Quiz

Mathematics

10th Grade

Hard

Created by

Ирина Ивановна

Used 17+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 sin(xπ4)>32\sin\left(x-\frac{\pi}{4}\right)>-\frac{\sqrt{3}}{2}  

 (π3+2πk;4π3+2πk)\left(-\frac{\pi}{3}+2\pi k;\frac{4\pi}{3}+2\pi k\right)  

 (π12+2πk;19π12+2πk)\left(-\frac{\pi}{12}+2\pi k;\frac{19\pi}{12}+2\pi k\right)  

 (π6+2πk;7π6+2πk)\left(-\frac{\pi}{6}+2\pi k;\frac{7\pi}{6}+2\pi k\right)  

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 sinx3<22\sin\frac{x}{3}<\frac{\sqrt{2}}{2}  

 (5π4+2πk;π4+2πk)\left(-\frac{5\pi}{4}+2\pi k;\frac{\pi}{4}+2\pi k\right)  

 (15π4+2πk;3π4+2πk)\left(-\frac{15\pi}{4}+2\pi k;\frac{3\pi}{4}+2\pi k\right)  

 (15π4+6πk;3π4+6πk)\left(-\frac{15\pi}{4}+6\pi k;\frac{3\pi}{4}+6\pi k\right)  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 2sin3x>12\sin3x>-1  

 (π18+2πk3;7π18+2πk3)\left(-\frac{\pi}{18}+\frac{2\pi k}{3};\frac{7\pi}{18}+\frac{2\pi k}{3}\right)  

 (π6+2πk3;7π6+2πk3)\left(-\frac{\pi}{6}+\frac{2\pi k}{3};\frac{7\pi}{6}+\frac{2\pi k}{3}\right)  

 (π18+2πk;7π18+2πk)\left(-\frac{\pi}{18}+2\pi k;\frac{7\pi}{18}+2\pi k\right)  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 2cosx2<22\cos\frac{x}{2}<\sqrt{2}  

 (π4+2πk;7π4+2πk)\left(\frac{\pi}{4}+2\pi k;\frac{7\pi}{4}+2\pi k\right)  

 (π2+4πk;7π2+4πk)\left(\frac{\pi}{2}+4\pi k;\frac{7\pi}{2}+4\pi k\right)  

 (π2+2πk;7π2+2πk)\left(\frac{\pi}{2}+2\pi k\text{;}\frac{7\pi}{2}+2\pi k\right)