Trapezium rule

Trapezium rule

12th Grade

4 Qs

quiz-placeholder

Similar activities

Calculus Volume

Calculus Volume

12th Grade

9 Qs

Implicit Differentiation

Implicit Differentiation

12th Grade

6 Qs

Derivadas 2

Derivadas 2

12th Grade

9 Qs

Summation Notation and Integrals

Summation Notation and Integrals

11th - 12th Grade

4 Qs

Properties of Limits

Properties of Limits

11th - 12th Grade

8 Qs

Diferenciales

Diferenciales

12th Grade

7 Qs

UJIAN SEMESTER KELAS 12

UJIAN SEMESTER KELAS 12

12th Grade

7 Qs

Writing Integrals Using Sigma Notation

Writing Integrals Using Sigma Notation

11th - 12th Grade

6 Qs

Trapezium rule

Trapezium rule

Assessment

Quiz

Mathematics

12th Grade

Easy

Created by

Saritha Sajith

Used 5+ times

FREE Resource

4 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

Which among the following is true?

Trapezium rule will give an estimate or approximate area under a curve.

Trapezium rule is used to get an exact area under a curve

2.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

Which among the following is true?

The trapezium rule works by splitting the area under a curve into a number of trapeziums of unequal width.

The trapezium rule works by splitting the area under a curve into a number of trapeziums of equal width.

3.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

Which among the following is the trapezium rule?

abf(x)dx=12h[yo+2{y1+y2+..yn1}+yn]\int_a^bf\left(x\right)dx=\frac{1}{2}h\left[y_o+2\left\{y_1+y_2+..y_n-1\right\}+y_n\right]

abf(x)dx=14h[yo+{y1+y2+..yn1}+yn]\int_a^bf\left(x\right)dx=\frac{1}{4}h\left[y_o+\left\{y_1+y_2+..y_n-1\right\}+y_n\right]

4.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

In the trapezium rule, h =?

 abf(x)dx=12h[yo+2{y1+y2+..yn1}+yn]\int_a^bf\left(x\right)dx=\frac{1}{2}h\left[y_o+2\left\{y_1+y_2+..y_n-1\right\}+y_n\right]  

 h=upper limit+lower limitno: of intervalsh=\frac{upper\ \lim it+lower\ \lim it}{no:\ of\ intervals}  

 h=upper limit  lower limitno:of intervalsh=\frac{upper\ \lim it\ -\ lower\ \lim it}{no:of\ intervals}  

 h=lower limit  upper limit2h=\frac{lower\ \lim it\ -\ upper\ \lim it}{2}