Search Header Logo

Integral by parts

Authored by gredy garrido

Mathematics

11th Grade - University

Used 22+ times

Integral by parts
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What would you choose for your u here if you used integration by parts?

t

3t

e2t

et

don't use IBP, let u = 2t

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Evaluate the indefinite integral using integration by parts. 
 3x e2x dx \int3x\ e^{2x}\ dx\   

 xe2x2+e2x4+C-\frac{xe^{2x}}{2}+\frac{e^{2x}}{4}+C  

 3xe2x23e2x4+C\frac{3xe^{2x}}{2}-\frac{3e^{2x}}{4}+C  

 xe2x+(1x2)2+Cxe^{-2x}+\frac{\left(1-x^2\right)^{ }}{2}+C  

 xe2x2+lne2x4+C-\frac{xe^{2x}}{2}+\frac{\ln e^{2x}}{4}+C  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Evaluate the indefinite integral using integration by parts. 
 t2lnt dt \int t^2\ln t\ dt\   

 2t2ln2tt24+C\frac{2t^2\ln2t-t^2}{4}+C  

 t3 ln33t39+C\frac{t^3\ \ln3}{3}-\frac{t^3}{9}+C  

 et2t+2+C\frac{e^t}{2t+2}+C  

 2t14e2t+C\frac{-2t-1}{4e^{2t}}+C  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 xexdx\int xe^{-x}dx  

 =ex(x1)+C=-e^{-x}\left(x-1\right)+C  

 =ex(x+1)+C=e^{-x}\left(x+1\right)+C  

 =ex(x1)+C=e^{-x}\left(x-1\right)+C  

 =ex(x+1)+C=-e^{-x}\left(x+1\right)+C  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Evaluate the indefinite integral using integration by parts
 xe4xdx ;  \int xe^{4x}dx\ ;\ \   

 x4xln414x(ln4)2+C-\frac{x}{4^x\ln4}-\frac{1}{4^x\cdot\left(\ln4\right)^2}+C  

 x5lnx5x525+C\frac{x^5\ln x}{5}-\frac{x^5}{25}+C  

 xln(x+4)x+4ln(x+4)+Cx\ln\left(x+4\right)-x+4\ln\left(x+4\right)+C  

 xe4x4e4x16+C\frac{xe^{4x}}{4}-\frac{e^{4x}}{16}+C  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Evaluate the indefinite integral using integration by parts. 
 3x e2x dx \int3x\ e^{2x}\ dx\   

 xe2x2+e2x4+C-\frac{xe^{2x}}{2}+\frac{e^{2x}}{4}+C  

 3xe2x23e2x4+C\frac{3xe^{2x}}{2}-\frac{3e^{2x}}{4}+C  

 xe2x+(1x2)2+Cxe^{-2x}+\frac{\left(1-x^2\right)^{ }}{2}+C  

 xe2x2+lne2x4+C-\frac{xe^{2x}}{2}+\frac{\ln e^{2x}}{4}+C  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Evaluate the indefinite integral using integration by parts. u and dv are provided.
 x4 lnx dx ;  u=lnx, dv=x4dx\int x^{4\ }\ln x\ dx\ ;\ \ u=\ln x,\ dv=x^4dx  

 ex4x+4+C\frac{e^x}{4x+4}+C  

 2x32ln4x34x329+C\frac{2x^{\frac{3}{2}}\ln4x}{3}-\frac{4x^{\frac{3}{2}}}{9}+C  

 (4x21)e4x232+C\frac{\left(4x^2-1\right)\cdot e^{4x^2}}{32}+C  

 x5lnx5x525+C\frac{x^5\ln x}{5}-\frac{x^5}{25}+C  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?