AP Calculus Volumes and Areas MC

AP Calculus Volumes and Areas MC

Assessment

Quiz

Created by

rachel mcbride

Mathematics

10th Grade - University

1 plays

Medium

Student preview

quiz-placeholder

21 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Select the formula for finding area under a curve bounded by the x axis.

 abf(x)dx\int_a^bf\left(x\right)dx  

 ab[f(x)g(x)] dx\int_a^b\left[f\left(x\right)-g\left(x\right)\right]\ dx  

 ab[f(x)]2dx\int_a^b\left[f\left(x\right)\right]^2dx  

 πabf(x)dx\pi\int_a^bf\left(x\right)dx  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Find the integral for the area under the curve.

62 2(x2 + 6x + 10) dx\int_{-6}^{-2}\ 2\left(x^2\ +\ 6x\ +\ 10\right)\ dx

62 2(x2 + 6x + 10) dx\int_{-6}^{-2}\ -2\left(x^2\ +\ 6x\ +\ 10\right)\ dx

62 (x2 + 6x + 10) dx\int_{-6}^{-2}\ \left(x^2\ +\ 6x\ +\ 10\right)\ dx

62 4(x2 + 6x + 10) dx\int_{-6}^{-2}\ -4\left(x^2\ +\ 6x\ +\ 10\right)\ dx

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Find the integral that would find the area of the region enclosed by the curves.

05[(x22+4x3)(x2+6x8)]dx\int_0^5\left[\left(-\frac{x^2}{2}+4x-3\right)-\left(-x^2+6x-8\right)\right]dx

15[(x2+6x8)(x22+4x3)]dx\int_1^5\left[\left(-x^2+6x-8\right)-\left(-\frac{x^2}{2}+4x-3\right)\right]dx

15[(x22+4x3)(x2+6x8)]dx\int_1^5\left[\left(-\frac{x^2}{2}+4x-3\right)-\left(-x^2+6x-8\right)\right]dx

05[(x2+6x8)(x22+4x3)]dx\int_0^5\left[\left(-x^2+6x-8\right)-\left(-\frac{x^2}{2}+4x-3\right)\right]dx

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Find the volume of the solid formed when cross sections perpendicular to the x axis are squares

Media Image
Media Image
Media Image
Media Image

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Find the volume of the solid formed when cross sections perpendicular to the x axis are semi-circles

Media Image
Media Image
Media Image
Media Image

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Volume using discs revolving around horizontal line. 

 πx=ax=b(top bottom)2dx  \pi\int_{x=a}^{x=b}\left(top\ -bottom\right)^2dx\ \   

 πx=ax=b(top bottom)dx  \pi\int_{x=a}^{x=b}\left(top\ -bottom\right)dx\ \   

 x=ax=b(top bottom)2dx  \int_{x=a}^{x=b}\left(top\ -bottom\right)^2dx\ \   

 x=ax=b(top bottom)dx  \int_{x=a}^{x=b}\left(top\ -bottom\right)dx\ \   

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Volume using discs revolving around vertical line. 

 πy=ay=b(right left)2dy  \pi\int_{y=a}^{y=b}\left(right\ -left\right)^2dy\ \   

 πy=ay=b(right left)dy  \pi\int_{y=a}^{y=b}\left(right\ -left\right)dy\ \   

 y=ay=b(right left)2dy  \int_{y=a}^{y=b}\left(right\ -left\right)^2dy\ \   

 y=ay=b(right left)dy  \int_{y=a}^{y=b}\left(right\ -left\right)dy\ \   

Explore all questions with a free account

or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?