Linear Algebra Set 1

Linear Algebra Set 1

University

15 Qs

quiz-placeholder

Similar activities

Increasing and Decreasing Functions

Increasing and Decreasing Functions

12th Grade - University

10 Qs

Optimisasi

Optimisasi

University

13 Qs

Límites de funciones multivariables

Límites de funciones multivariables

University - Professional Development

10 Qs

Area bajo la curva y entre curvas

Area bajo la curva y entre curvas

University

10 Qs

ELIPSE

ELIPSE

University

15 Qs

Exponential Transformations-1

Exponential Transformations-1

9th Grade - University

15 Qs

Quiz - Forms of Quadratic Equations

Quiz - Forms of Quadratic Equations

9th Grade - University

18 Qs

Ujian Matematika SMA

Ujian Matematika SMA

University

10 Qs

Linear Algebra Set 1

Linear Algebra Set 1

Assessment

Quiz

Mathematics

University

Hard

Created by

Rohit G

Used 25+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let VV be set of all pairs  (x, y)\left(x,\ y\right)  of real numbers and let  FF  be the field of real numbers, Define   (x, y)+(x1, y1)=(x+x1, y+y1)\left(x,\ y\right)+\left(x_1,\ y_1\right)=\left(x+x_1,\ y+y_1\right)  and  c(x, y)=(cx, y)c\left(x,\ y\right)=\left(cx,\ y\right)  , then

 V is a vector space over the field of real numbers.

 V is not a vector space over the field of real numbers

cannot be determined

 V ={(x, y) : x , y are real numbers}V\ =\left\{\left(x,\ y\right)\ :\ x\ ,\ y\ are\ real\ numbers\right\}  

2.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Let  VV  be a vector space over the field  FF  . Let  WW  be a subset of  VV  . Then  WW  is a subspace of  VV  over the field  FF  if  

 WW  is a vector space over the field  FF  

  x ,  y W, x+yW and xyW\forall\ x\ ,\ \ y\ \in W,\ x+y\in W\ and\ xy\in W  

  x ,  y W and cF, x+yW and cyW\forall\ x\ ,\ \ y\ \in W\ and\ c\in F,\ x+y\in W\ and\ cy\in W  

  x ,  y W and cF ,  cx+yW \forall\ x\ ,\ \ y\ \in W\ and\ c\in F\ ,\ \ cx+y\in W\   

3.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Let  VV be a vector space over the field  FF  . Let  W1 , W2 , W3W_1\ ,\ W_2\ ,\ W_3  are the subspaces of  VV  . Then 

 W1(W2W3)W_1\cup\left(W_2\cap W_3\right)  is a subspace of  VV  

 W1(W2W3)W_1\cap\left(W_2\cap W_3\right)  is a subspace of  VV  

 W1 W2W_1\ \cup W_2  is a subspace of  VV  

 W2 W3W_2\ \cap W_3  is a subspace of  VV  

4.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let VV be the real vector space of all functions  ff  from  R into R R\ into\ R\   . Which of the following sets of functions are subspaces of  VV  ? 

all  ff  such that  f(x2)= f(x)2f\left(x^2\right)=\ f\left(x\right)^2  

all  ff  such that  f(0)=f(1)f\left(0\right)=f\left(1\right)  

all  ff  such that  f(1)=0f\left(-1\right)=0  

all  ff   such that  f(3)=1+f(5)f\left(3\right)=1+f\left(-5\right)  

5.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

If  W1 and W2W_1\ and\ W_2  are the finite dimensional subspaces of vector space  VV  , then

 dim(W1+W2)=dimW1+dim W2\dim\left(W_1+W_2\right)=\dim W_1+\dim\ W_2  

 dim(W1+W2)=dimW1+dim W2dim(W1W2)\dim\left(W_1+W_2\right)=\dim W_1+\dim\ W_2-\dim\left(W_1\cap W_2\right)  

 dim(W1+W2)+dim(W1W2)=dimW1+dim W2\dim\left(W_1+W_2\right)+\dim\left(W_1\cap W_2\right)=\dim W_1+\dim\ W_2  

 dim(W1+W2)=dim(W1W2)\dim\left(W_1+W_2\right)=\dim\left(W_1\cap W_2\right)  

6.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Let us consider (1,1,2,4),(2,1,5,2),(1,1,4,0) and (2,1,1,6)\left(1,1,2,4\right),\left(2,-1,-5,2\right),\left(1,-1,-4,0\right)\ and\ \left(2,1,1,6\right) vectors in  R4R^4  , then  


they are linearly depenent

they are linearly independent

cannot be determined

none of the above

7.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let  V=R3V=R^3  be a vector space over field  RR  . Then

 {(1,0,0),(0,1,0),(0,0,0)}\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,0\right)\right\}  is a basis of  R3R^3  

 {(1,0,0),(1,1,1),(0,0,2)}\left\{\left(1,0,0\right),\left(1,1,1\right),\left(0,0,2\right)\right\}   is a basis of  R^3  

 {(1,0,0),(0,1,0),(0,0,1),(2,3,4)}\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,1\right),\left(2,3,4\right)\right\}   is a basis of  R^3  

 {(1,2,3),(4,5,6),(7,8,9)}\left\{\left(1,2,3\right),\left(4,5,6\right),\left(7,8,9\right)\right\}   is a basis of  R^3  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics