Linear Algebra Set 1

Linear Algebra Set 1

University

15 Qs

quiz-placeholder

Similar activities

ระบบตัวเลขฐาน

ระบบตัวเลขฐาน

7th Grade - University

10 Qs

EDO por exactas

EDO por exactas

University

10 Qs

STATISTIKA

STATISTIKA

12th Grade - University

20 Qs

Quiz - CM6

Quiz - CM6

University

14 Qs

Repaso Unidad 1- Cálculo III - Com 520 - 2022

Repaso Unidad 1- Cálculo III - Com 520 - 2022

University

10 Qs

Conversion Metric to Metric

Conversion Metric to Metric

7th Grade - University

20 Qs

Medidas de tendencia central y de Dispercion

Medidas de tendencia central y de Dispercion

University

11 Qs

Revisões

Revisões

8th Grade - University

10 Qs

Linear Algebra Set 1

Linear Algebra Set 1

Assessment

Quiz

Mathematics

University

Practice Problem

Hard

Created by

Rohit G

Used 25+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

15 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let VV be set of all pairs  (x, y)\left(x,\ y\right)  of real numbers and let  FF  be the field of real numbers, Define   (x, y)+(x1, y1)=(x+x1, y+y1)\left(x,\ y\right)+\left(x_1,\ y_1\right)=\left(x+x_1,\ y+y_1\right)  and  c(x, y)=(cx, y)c\left(x,\ y\right)=\left(cx,\ y\right)  , then

 V is a vector space over the field of real numbers.

 V is not a vector space over the field of real numbers

cannot be determined

 V ={(x, y) : x , y are real numbers}V\ =\left\{\left(x,\ y\right)\ :\ x\ ,\ y\ are\ real\ numbers\right\}  

2.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Let  VV  be a vector space over the field  FF  . Let  WW  be a subset of  VV  . Then  WW  is a subspace of  VV  over the field  FF  if  

 WW  is a vector space over the field  FF  

  x ,  y W, x+yW and xyW\forall\ x\ ,\ \ y\ \in W,\ x+y\in W\ and\ xy\in W  

  x ,  y W and cF, x+yW and cyW\forall\ x\ ,\ \ y\ \in W\ and\ c\in F,\ x+y\in W\ and\ cy\in W  

  x ,  y W and cF ,  cx+yW \forall\ x\ ,\ \ y\ \in W\ and\ c\in F\ ,\ \ cx+y\in W\   

3.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Let  VV be a vector space over the field  FF  . Let  W1 , W2 , W3W_1\ ,\ W_2\ ,\ W_3  are the subspaces of  VV  . Then 

 W1(W2W3)W_1\cup\left(W_2\cap W_3\right)  is a subspace of  VV  

 W1(W2W3)W_1\cap\left(W_2\cap W_3\right)  is a subspace of  VV  

 W1 W2W_1\ \cup W_2  is a subspace of  VV  

 W2 W3W_2\ \cap W_3  is a subspace of  VV  

4.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let VV be the real vector space of all functions  ff  from  R into R R\ into\ R\   . Which of the following sets of functions are subspaces of  VV  ? 

all  ff  such that  f(x2)= f(x)2f\left(x^2\right)=\ f\left(x\right)^2  

all  ff  such that  f(0)=f(1)f\left(0\right)=f\left(1\right)  

all  ff  such that  f(1)=0f\left(-1\right)=0  

all  ff   such that  f(3)=1+f(5)f\left(3\right)=1+f\left(-5\right)  

5.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

If  W1 and W2W_1\ and\ W_2  are the finite dimensional subspaces of vector space  VV  , then

 dim(W1+W2)=dimW1+dim W2\dim\left(W_1+W_2\right)=\dim W_1+\dim\ W_2  

 dim(W1+W2)=dimW1+dim W2dim(W1W2)\dim\left(W_1+W_2\right)=\dim W_1+\dim\ W_2-\dim\left(W_1\cap W_2\right)  

 dim(W1+W2)+dim(W1W2)=dimW1+dim W2\dim\left(W_1+W_2\right)+\dim\left(W_1\cap W_2\right)=\dim W_1+\dim\ W_2  

 dim(W1+W2)=dim(W1W2)\dim\left(W_1+W_2\right)=\dim\left(W_1\cap W_2\right)  

6.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Let us consider (1,1,2,4),(2,1,5,2),(1,1,4,0) and (2,1,1,6)\left(1,1,2,4\right),\left(2,-1,-5,2\right),\left(1,-1,-4,0\right)\ and\ \left(2,1,1,6\right) vectors in  R4R^4  , then  


they are linearly depenent

they are linearly independent

cannot be determined

none of the above

7.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let  V=R3V=R^3  be a vector space over field  RR  . Then

 {(1,0,0),(0,1,0),(0,0,0)}\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,0\right)\right\}  is a basis of  R3R^3  

 {(1,0,0),(1,1,1),(0,0,2)}\left\{\left(1,0,0\right),\left(1,1,1\right),\left(0,0,2\right)\right\}   is a basis of  R^3  

 {(1,0,0),(0,1,0),(0,0,1),(2,3,4)}\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,1\right),\left(2,3,4\right)\right\}   is a basis of  R^3  

 {(1,2,3),(4,5,6),(7,8,9)}\left\{\left(1,2,3\right),\left(4,5,6\right),\left(7,8,9\right)\right\}   is a basis of  R^3  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?