Triangle Proofs fill in Blanks

Triangle Proofs fill in Blanks

10th Grade

9 Qs

quiz-placeholder

Similar activities

Congruent Triangle Two-Column Proofs

Congruent Triangle Two-Column Proofs

9th - 12th Grade

13 Qs

Parallelogram Proofs(with triangle congruence) M15.6

Parallelogram Proofs(with triangle congruence) M15.6

10th Grade

10 Qs

Statement and Reason to Prove Triangles Congruent

Statement and Reason to Prove Triangles Congruent

9th Grade - University

11 Qs

Congruent SAS SSS

Congruent SAS SSS

9th - 12th Grade

11 Qs

SSS SAS Congruence

SSS SAS Congruence

9th - 12th Grade

11 Qs

Triangle Congruence: ASA and AAS

Triangle Congruence: ASA and AAS

9th - 12th Grade

10 Qs

3.5 Geometric Proofs 2 (CPCTC)

3.5 Geometric Proofs 2 (CPCTC)

8th - 11th Grade

10 Qs

Overlapping Triangles

Overlapping Triangles

9th - 12th Grade

13 Qs

Triangle Proofs fill in Blanks

Triangle Proofs fill in Blanks

Assessment

Quiz

Mathematics

10th Grade

Easy

CCSS
HSG.CO.B.7, HSG.CO.B.8, HSG.SRT.B.5

+4

Standards-aligned

Created by

Brooke Dean

Used 7+ times

FREE Resource

9 questions

Show all answers

1.

DROPDOWN QUESTION

1 min • 1 pt

Media Image

Claim:​ ΔADC≅ΔBDC

Context:​ (a)   , CD Bisects AB

Evidence: ​ (b)   by​ def of bisector

​ CD ≌ DC by​ (c)  

Explanation: ΔADC≅ΔBDC by​ (d)  

AC ≅ CB
∠ACD ≅∠BCD
reflexive property
SAS
SSS
ASA
AAS
Vertical Angles
alternate interior angles

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

CCSS.HSG.SRT.B.5

2.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim:⊿ABC≅⊿DEC

Context: ​ ​ (a)   , C is the midpoint of BE and AD

Evidence:​ (b)   by definition of midpoint

AC≌DC by​ (c)  

Explanation: ⊿ABC≅⊿DEC by​ (d)  

BA≅ED
BC≌CE
definition of midpoint
SSS
SAS
Vertical Angles
Reflexive Property
AAS
Alternate interior angles

Tags

CCSS.HSG.CO.B.6

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

3.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

​ Claim: ⊿ABC≌⊿ECD

Context:​ (a)   ​, ​​ (b)  

Evidence:​ (c)   by​ (d)  

Explanation: ⊿ABC≌⊿ECD BY​ (e)  

BC≌DC
AC ≌ EC
∠ACB ≌ ∠ECD
Vertical Angles
SAS
Reflexive Property
∠ABC ≌ ∠CED
Alternate Interior Angles
AAS
ASA

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.SRT.B.5

4.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim:⊿WXZ≅⊿YZX

Context: WX∥YZ, ​ (a)  

Evidence: ​ (b)   by
(c)   , ​ (d)   by ​Reflexive Property

Explanation: ⊿WXZ≅⊿YZX by​ (e)  

WX≅YZ
∠WXZ≅∠YZX
Alternate Interior
ZX≅XZ
SAS
Vertical Angles
∠W≅∠Y
ASA
SSS

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

CCSS.HSG.CO.C.9

CCSS.HSG.SRT.B.5

5.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim RQ≅QS

Context: TQ bisects ∠RTS, TQ⊥RS

Evidence:​ (a)   by def of bisector

​ (b)   by def of ⊥

​ (c)   by​ (d)  

Explanation: ⊿RTQ≅STQ by​ (e)   so, RQ≅QS by ≅parts of ⊿

∠RTQ ≅∠STQ
∠RQT≅∠SQT
TQ≅TQ
Reflexive Prop.
ASA
SSS
AAS
RT≅TR
vertical angles
alt. interior angles

Tags

CCSS.HSG.CO.B.6

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

CCSS.HSG.SRT.B.5

6.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim: ⊿ABE≅⊿CDE

Context: AB∥CD AE≅CE

Evidence: ​ (a)   by​ (b)   ,∠AEB≅∠DEC by​ (c)  

Explanation: ⊿ABE≅⊿CDE by ​ (d)  

∠A≅∠C
Alternate Interior Angles
Vertical Angles
ASA
SSS
SAS
Reflexive Property
BE≅EB

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.9

CCSS.HSG.SRT.B.5

7.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim: CS ≌ WD

Context: CW and SD bisect each other

Evidence: ​ CP≅PW by bisector

SP ≌ PD by​ (a)   ​ (b)   by​ (c)  

Explanation: ⊿CPS ≅ ⊿WPD by​ (d)   so CS ≌ WD​ (e)  

bisector
∠CPS ≅∠DPW
Vertical Angle
SAS
≅ parts of ≅⊿
∠P ≌ ∠W
Alt. Interior
AAS
SSS
ASA

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

8.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim: ⊿BCA≌⊿DAC

Context: ABCD is a Rhombus

Evidence: ​ (a)   property of Rhombus

AD≅BC property of Rhombus

​ ​ (b)   by Reflexive Property

Explanation:⊿BCA≌⊿DAC by​ (c)  

AB≅DC
AC≅AC
SSS
SAS
∠A≅∠C
ASA
AAS

Tags

CCSS.HSG.CO.B.6

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.11

CCSS.HSG.SRT.B.5

9.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim: ⊿MAE≅⊿THE

Context: MATH is a Rhombus

Evidence: ​ AM ∥ MT​ (a)  

​ (b)   by property of Rhombus

​ (c)   by alt. interior angle

​ (d)   by vertical angle

Explanation: ⊿MAE≅⊿THE by​ (e)  

property of a Rhombus
AM≅MT
∠MAE ≅ ∠TME
∠AEM ≅ ∠HET
AAS
ASA
SAS
AE≅EH

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

CCSS.HSG.CO.C.11

CCSS.HSG.SRT.B.5