Search Header Logo

Triangle Proofs fill in Blanks

Authored by Brooke Dean

Mathematics

10th Grade

CCSS covered

Used 8+ times

Triangle Proofs fill in Blanks
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

9 questions

Show all answers

1.

DROPDOWN QUESTION

1 min • 1 pt

Media Image

Claim:​ ΔADC≅ΔBDC

Context:​ (a)   , CD Bisects AB

Evidence: ​ (b)   by​ def of bisector

​ CD ≌ DC by​ (c)  

Explanation: ΔADC≅ΔBDC by​ (d)  

AC ≅ CB
∠ACD ≅∠BCD
reflexive property
SAS
SSS
ASA
AAS
Vertical Angles
alternate interior angles

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.SRT.B.5

CCSS.HSG.CO.C.10

2.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim:⊿ABC≅⊿DEC

Context: ​ ​ (a)   , C is the midpoint of BE and AD

Evidence:​ (b)   by definition of midpoint

AC≌DC by​ (c)  

Explanation: ⊿ABC≅⊿DEC by​ (d)  

BA≅ED
BC≌CE
definition of midpoint
SSS
SAS
Vertical Angles
Reflexive Property
AAS
Alternate interior angles

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

CCSS.HSG.CO.B.6

3.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

​ Claim: ⊿ABC≌⊿ECD

Context:​ (a)   ​, ​​ (b)  

Evidence:​ (c)   by​ (d)  

Explanation: ⊿ABC≌⊿ECD BY​ (e)  

BC≌DC
AC ≌ EC
∠ACB ≌ ∠ECD
Vertical Angles
SAS
Reflexive Property
∠ABC ≌ ∠CED
Alternate Interior Angles
AAS
ASA

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.SRT.B.5

4.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim:⊿WXZ≅⊿YZX

Context: WX∥YZ, ​ (a)  

Evidence: ​ (b)   by
(c)   , ​ (d)   by ​Reflexive Property

Explanation: ⊿WXZ≅⊿YZX by​ (e)  

WX≅YZ
∠WXZ≅∠YZX
Alternate Interior
ZX≅XZ
SAS
Vertical Angles
∠W≅∠Y
ASA
SSS

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.SRT.B.5

CCSS.HSG.CO.C.10

CCSS.HSG.CO.C.9

5.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim RQ≅QS

Context: TQ bisects ∠RTS, TQ⊥RS

Evidence:​ (a)   by def of bisector

​ (b)   by def of ⊥

​ (c)   by​ (d)  

Explanation: ⊿RTQ≅STQ by​ (e)   so, RQ≅QS by ≅parts of ⊿

∠RTQ ≅∠STQ
∠RQT≅∠SQT
TQ≅TQ
Reflexive Prop.
ASA
SSS
AAS
RT≅TR
vertical angles
alt. interior angles

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.SRT.B.5

CCSS.HSG.CO.C.10

CCSS.HSG.CO.B.6

6.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim: ⊿ABE≅⊿CDE

Context: AB∥CD AE≅CE

Evidence: ​ (a)   by​ (b)   ,∠AEB≅∠DEC by​ (c)  

Explanation: ⊿ABE≅⊿CDE by ​ (d)  

∠A≅∠C
Alternate Interior Angles
Vertical Angles
ASA
SSS
SAS
Reflexive Property
BE≅EB

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.SRT.B.5

CCSS.HSG.CO.C.9

7.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Claim: CS ≌ WD

Context: CW and SD bisect each other

Evidence: ​ CP≅PW by bisector

SP ≌ PD by​ (a)   ​ (b)   by​ (c)  

Explanation: ⊿CPS ≅ ⊿WPD by​ (d)   so CS ≌ WD​ (e)  

bisector
∠CPS ≅∠DPW
Vertical Angle
SAS
≅ parts of ≅⊿
∠P ≌ ∠W
Alt. Interior
AAS
SSS
ASA

Tags

CCSS.HSG.CO.B.7

CCSS.HSG.CO.B.8

CCSS.HSG.CO.C.10

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?