Summary of Convergence Tests

Summary of Convergence Tests

12th Grade

14 Qs

quiz-placeholder

Similar activities

Infinite Series

Infinite Series

10th Grade - University

16 Qs

MTH 264 - Ch 10.8 - Taylor and Maclaurin Series

MTH 264 - Ch 10.8 - Taylor and Maclaurin Series

11th Grade - University

10 Qs

Sequence Convergent or Divergent

Sequence Convergent or Divergent

10th Grade - University

16 Qs

10.1-10.5 Convergence Tests #1

10.1-10.5 Convergence Tests #1

10th - 12th Grade

16 Qs

Divergence and Integral Tests

Divergence and Integral Tests

12th Grade

10 Qs

GST, nth term, factorial

GST, nth term, factorial

11th - 12th Grade

12 Qs

Series Tests

Series Tests

11th - 12th Grade

10 Qs

Convergence and Divergence of Series

Convergence and Divergence of Series

12th Grade

13 Qs

Summary of Convergence Tests

Summary of Convergence Tests

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Quizizz Content

FREE Resource

14 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

@@|r| < 1@@

@@|r| = 0@@

@@|r| = 1@@

@@|r| \ge 1@@

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|>1@@ or @@\infty@@

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|=1@@

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|<1@@

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|=0@@

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

@@\lim_{n\rightarrow\infty}a_n \ne 0@@

@@\lim_{n\rightarrow\infty}a_n = 0@@

@@a_n \text{ is a positive term}@@

@@a_n \text{ is a decreasing sequence}@@

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The series @@\sum_{n=1}^{\infty}a_n@@ will converge using the nth Term Test if ...

The limit of the terms approaches a non-zero constant.

The limit of the terms approaches zero, but the test is inconclusive.

The series is a geometric series with a ratio less than one.

Never! The nth Term Test cannot prove a series is convergent.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The series @@\sum_{n=1}^{\infty}a_n@@ will converge using the Integral Test if ...

If @@a_n=f(n)@@ is positive, decreasing, and continuous, and @@\int_1^{\infty}f(x)dx@@ converges then, @@\sum_{n=1}^{\infty}a_n@@ converges

If @@a_n=f(n)@@ is positive and increasing, and @@\int_1^{\infty}f(x)dx@@ diverges then, @@\sum_{n=1}^{\infty}a_n@@ converges

If @@a_n=f(n)@@ is negative, decreasing, and continuous, and @@\int_1^{\infty}f(x)dx@@ converges then, @@\sum_{n=1}^{\infty}a_n@@ converges

If @@a_n=f(n)@@ is positive, decreasing, and continuous, and @@\int_1^{\infty}f(x)dx@@ diverges then, @@\sum_{n=1}^{\infty}a_n@@ converges

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The p-Series @@\sum_{n=1}^{\infty}\frac{1}{n^{\ p}}@@ will diverge if ...

@@p > 1@@

@@p = 0@@

@@p < 1@@

@@p = 2@@

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The p-Series @@\sum_{n=1}^{\infty}\frac{1}{n^{\ p}}@@ will converge if ...

p > 1

p < 1

p = 0

p = 1

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?