Summary of Convergence Tests

Summary of Convergence Tests

12th Grade

14 Qs

quiz-placeholder

Similar activities

Taylor Polynomials

Taylor Polynomials

11th Grade - University

10 Qs

Infinite Geometric Series

Infinite Geometric Series

9th - 12th Grade

9 Qs

Precalc 10-1 (Day 2) - CORONA

Precalc 10-1 (Day 2) - CORONA

10th - 12th Grade

10 Qs

Calculus P-Series Test (AI generated)

Calculus P-Series Test (AI generated)

9th - 12th Grade

10 Qs

Spring Final Study Guide Part 3

Spring Final Study Guide Part 3

11th - 12th Grade

15 Qs

Infinite Geometric Series

Infinite Geometric Series

11th Grade - University

10 Qs

Sequences and Series

Sequences and Series

9th Grade - University

15 Qs

31. infinite series - comparison tests

31. infinite series - comparison tests

11th Grade - University

10 Qs

Summary of Convergence Tests

Summary of Convergence Tests

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Quizizz Content

FREE Resource

14 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

@@|r| < 1@@

@@|r| = 0@@

@@|r| = 1@@

@@|r| \ge 1@@

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|>1@@ or @@\infty@@

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|=1@@

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|<1@@

@@\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_n}\right|=0@@

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

@@\lim_{n\rightarrow\infty}a_n \ne 0@@

@@\lim_{n\rightarrow\infty}a_n = 0@@

@@a_n \text{ is a positive term}@@

@@a_n \text{ is a decreasing sequence}@@

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The series @@\sum_{n=1}^{\infty}a_n@@ will converge using the nth Term Test if ...

The limit of the terms approaches a non-zero constant.

The limit of the terms approaches zero, but the test is inconclusive.

The series is a geometric series with a ratio less than one.

Never! The nth Term Test cannot prove a series is convergent.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The series @@\sum_{n=1}^{\infty}a_n@@ will converge using the Integral Test if ...

If @@a_n=f(n)@@ is positive, decreasing, and continuous, and @@\int_1^{\infty}f(x)dx@@ converges then, @@\sum_{n=1}^{\infty}a_n@@ converges

If @@a_n=f(n)@@ is positive and increasing, and @@\int_1^{\infty}f(x)dx@@ diverges then, @@\sum_{n=1}^{\infty}a_n@@ converges

If @@a_n=f(n)@@ is negative, decreasing, and continuous, and @@\int_1^{\infty}f(x)dx@@ converges then, @@\sum_{n=1}^{\infty}a_n@@ converges

If @@a_n=f(n)@@ is positive, decreasing, and continuous, and @@\int_1^{\infty}f(x)dx@@ diverges then, @@\sum_{n=1}^{\infty}a_n@@ converges

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The p-Series @@\sum_{n=1}^{\infty}\frac{1}{n^{\ p}}@@ will diverge if ...

@@p > 1@@

@@p = 0@@

@@p < 1@@

@@p = 2@@

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The p-Series @@\sum_{n=1}^{\infty}\frac{1}{n^{\ p}}@@ will converge if ...

p > 1

p < 1

p = 0

p = 1

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?