Calculus 7.3 Shell Method

Calculus 7.3 Shell Method

9th - 12th Grade

5 Qs

quiz-placeholder

Similar activities

Solve for specific variable.

Solve for specific variable.

7th - 9th Grade

10 Qs

2/18- Weekly Review/Warmup

2/18- Weekly Review/Warmup

12th Grade

8 Qs

Ch 6 AP Review

Ch 6 AP Review

9th - 12th Grade

10 Qs

Aplikasi Turunan Fungsi Trigonometri

Aplikasi Turunan Fungsi Trigonometri

12th Grade

10 Qs

Inverse Trigonometry Class XII

Inverse Trigonometry Class XII

12th Grade

10 Qs

Literal Equations

Literal Equations

9th Grade

10 Qs

Literal Equations

Literal Equations

9th Grade

10 Qs

Literal Equations

Literal Equations

9th - 12th Grade

10 Qs

Calculus 7.3 Shell Method

Calculus 7.3 Shell Method

Assessment

Quiz

Mathematics

9th - 12th Grade

Medium

Created by

Julie C

Used 73+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

True or False: For the shell method V = πabp(x)h(x)dxV\ =\ \pi\int_a^bp\left(x\right)h\left(x\right)dx  

True

True, but only in some instances

False, it is  2π2\pi  

False, this is the disc/washer method

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Use the shell method to find the volume of the solid generated by revolving the region bounded by  y=xy=\sqrt{x}  and  x=4x=4  and  y=0y=0  about the y-axis.

 128π5\frac{128\pi}{5}  

 16π16\pi  

 32π5\frac{32\pi}{5}  

 8π3\frac{8\pi}{3}  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Use the shell method to find the area of the region bounded by  y=x3y=x^3  and  x=0x=0  and y=8y=8  about the x-axis.

 768π7\frac{768\pi}{7}  

 32π5\frac{32\pi}{5}  

 32768π5\frac{32768\pi}{5}  

 64π7\frac{64\pi}{7}  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Use the shell method to find the volume of the solid generated by revolving the region bounded by  y=x2y=x^2  ,  y = 4y\ =\ 4  and  x=0x=0  about the y-axis.

 8π8\pi  

 16π3\frac{16\pi}{3}  

 16π16\pi  

 2π2\pi  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Use the shell method to find the volume of the solid generated by revolving the region bounded by  y=x2y=x^2  and  y=2xy=2x  about the y-axis.

 8π3\frac{8\pi}{3}  

 8π8\pi  

 6π6\pi  

 4π3\frac{4\pi}{3}