Vector Algebra

Vector Algebra

12th Grade

10 Qs

quiz-placeholder

Similar activities

math

math

7th Grade - University

11 Qs

Vectores y rectas

Vectores y rectas

10th - 12th Grade

15 Qs

Himpunan 7a

Himpunan 7a

11th - 12th Grade

10 Qs

Ulangan Dimensi Tiga

Ulangan Dimensi Tiga

12th Grade

10 Qs

Online Maths Quiz

Online Maths Quiz

10th Grade - University

10 Qs

MTF2 BAB 11 : 11.2.3 TRANSLASI PT2

MTF2 BAB 11 : 11.2.3 TRANSLASI PT2

12th Grade

15 Qs

Ulangan Harian Limit Trigonometri

Ulangan Harian Limit Trigonometri

12th Grade

10 Qs

KUIZ MATEMATIK TAHUN 3 (MINGGU 18)

KUIZ MATEMATIK TAHUN 3 (MINGGU 18)

1st - 12th Grade

10 Qs

Vector Algebra

Vector Algebra

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Hard

Created by

Anitha T

Used 100+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If

 a,b,c\overrightarrow{a}\overrightarrow{,b,}\overrightarrow{c}  are three unit vectors such that  a\overrightarrow{a}    is perpendicular to  b\overrightarrow{b}   , and is parallel to  c\overrightarrow{c}   then  a(b×c)\overrightarrow{a}\left(\overrightarrow{b}\times\overrightarrow{c}\right)   is equal to

 a\overrightarrow{a}  

 b\overrightarrow{b}  

 c\overrightarrow{c}  

 0\overrightarrow{0}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 [a,b,c]=1 \left[\overrightarrow{a}\overrightarrow{,b}\overrightarrow{,c}\right]=1\   then the value of   a(b×c)(c×a)b +b(c×a)(a×b)c+c(a×b)(c×b)a\ \frac{\overrightarrow{a}\cdot\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{c}\times\overrightarrow{a}\right)\cdot\overrightarrow{b}}\ +\frac{\overrightarrow{b}\cdot\left(\overrightarrow{c}\times\overrightarrow{a}\right)}{\left(\overrightarrow{a}\times\overrightarrow{b}\right)\cdot\overrightarrow{c}}+\frac{\overrightarrow{c}\cdot\left(\overrightarrow{a}\times\overrightarrow{b}\right)}{\left(\overrightarrow{c}\times\overrightarrow{b}\right)\cdot\overrightarrow{a}}  


-1

2

1

3

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\  are the unit vectors such that    [a,b, a×b]=π4, \left[\overrightarrow{a},\overrightarrow{b},\ \overrightarrow{a}\times\overrightarrow{b}\right]=\frac{\pi}{4},\   then the angle between    a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\   is 

 π4\frac{\pi}{4}  

 π3\frac{\pi}{3}  

 π6\frac{\pi}{6}  

 π2\frac{\pi}{2}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Consider the vectors  a,b,c,d\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d} such that    (a×b)×(c×d)=0.\ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)=\overrightarrow{0}.  Let  P1P_1   and  P2P_2   be the planes determined  by the pairs of vectors a,b and c,d \overrightarrow{a},\overrightarrow{b}\ and\ \overrightarrow{c},\overrightarrow{d}\   respectively .Then the angle between P1 and P2 is P_1\ and\ P_2\ is\    



 60°60\degree  

 0°0\degree  

 90°90\degree  

 45°45\degree  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a×(b×c)=(a×b)×c,\ \overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)=\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\overrightarrow{c},    where a,b,c \ where\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\  are any three vectors such that  bc0 and ab0, then a and b  are \overrightarrow{b}\cdot\overrightarrow{c}\ne0\ and\ \overrightarrow{a}\cdot\overrightarrow{b}\ne0,\ then\ \overrightarrow{a}\ and\ \overrightarrow{b\ }\ are\   



 inclined at an angle π3inclined\ at\ an\ angle\ \frac{\pi}{3}  

 parallelparallel  

 inclined at an angle π6inclined\ at\ an\ angle\ \frac{\pi}{6}  

 perpendicular perpendicular\   

6.

FILL IN THE BLANK QUESTION

30 sec • 1 pt

If   a, b,c \ \overrightarrow{a},\ \overrightarrow{b},\overrightarrow{c}\   are non - coplanar ,non-zero vectors such that   [a,b,c]=3 then {[a×b, b×c,c×a]}2 \ \left[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right]=3\ then\ \left\{\left[\overrightarrow{a}\times\overrightarrow{b},\ \overrightarrow{b}\times\overrightarrow{c},\overrightarrow{c}\times\overrightarrow{a}\right]\right\}^2\   is equal to 

7.

FILL IN THE BLANK QUESTION

45 sec • 1 pt

If the volume of the parallelpiped with    (a×b)×(b×c),(b×c)×(c×a) and \ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)\ and\     (c×a)×(a×b)\ \left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)  as conterminous edges is ,



Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?