Vector Algebra

Vector Algebra

12th Grade

10 Qs

quiz-placeholder

Similar activities

PH 1 Bilangan Berpangkat Kelas 9 2021/2022

PH 1 Bilangan Berpangkat Kelas 9 2021/2022

1st - 12th Grade

10 Qs

Polinômios

Polinômios

8th - 12th Grade

15 Qs

Standard_Angles_sin_cos_tan

Standard_Angles_sin_cos_tan

9th - 12th Grade

13 Qs

Géométrie positionnement

Géométrie positionnement

11th - 12th Grade

11 Qs

PTS MATEMATIKA 2022/2023

PTS MATEMATIKA 2022/2023

12th Grade

15 Qs

Funciones

Funciones

10th Grade - University

12 Qs

Ubahan Bergabung

Ubahan Bergabung

12th Grade

11 Qs

ÔN TẬP NGUYÊN HÀM TÍCH PHÂN

ÔN TẬP NGUYÊN HÀM TÍCH PHÂN

12th Grade

11 Qs

Vector Algebra

Vector Algebra

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Hard

Created by

Anitha T

Used 100+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If

 a,b,c\overrightarrow{a}\overrightarrow{,b,}\overrightarrow{c}  are three unit vectors such that  a\overrightarrow{a}    is perpendicular to  b\overrightarrow{b}   , and is parallel to  c\overrightarrow{c}   then  a(b×c)\overrightarrow{a}\left(\overrightarrow{b}\times\overrightarrow{c}\right)   is equal to

 a\overrightarrow{a}  

 b\overrightarrow{b}  

 c\overrightarrow{c}  

 0\overrightarrow{0}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 [a,b,c]=1 \left[\overrightarrow{a}\overrightarrow{,b}\overrightarrow{,c}\right]=1\   then the value of   a(b×c)(c×a)b +b(c×a)(a×b)c+c(a×b)(c×b)a\ \frac{\overrightarrow{a}\cdot\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{c}\times\overrightarrow{a}\right)\cdot\overrightarrow{b}}\ +\frac{\overrightarrow{b}\cdot\left(\overrightarrow{c}\times\overrightarrow{a}\right)}{\left(\overrightarrow{a}\times\overrightarrow{b}\right)\cdot\overrightarrow{c}}+\frac{\overrightarrow{c}\cdot\left(\overrightarrow{a}\times\overrightarrow{b}\right)}{\left(\overrightarrow{c}\times\overrightarrow{b}\right)\cdot\overrightarrow{a}}  


-1

2

1

3

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\  are the unit vectors such that    [a,b, a×b]=π4, \left[\overrightarrow{a},\overrightarrow{b},\ \overrightarrow{a}\times\overrightarrow{b}\right]=\frac{\pi}{4},\   then the angle between    a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\   is 

 π4\frac{\pi}{4}  

 π3\frac{\pi}{3}  

 π6\frac{\pi}{6}  

 π2\frac{\pi}{2}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Consider the vectors  a,b,c,d\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d} such that    (a×b)×(c×d)=0.\ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)=\overrightarrow{0}.  Let  P1P_1   and  P2P_2   be the planes determined  by the pairs of vectors a,b and c,d \overrightarrow{a},\overrightarrow{b}\ and\ \overrightarrow{c},\overrightarrow{d}\   respectively .Then the angle between P1 and P2 is P_1\ and\ P_2\ is\    



 60°60\degree  

 0°0\degree  

 90°90\degree  

 45°45\degree  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a×(b×c)=(a×b)×c,\ \overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)=\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\overrightarrow{c},    where a,b,c \ where\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\  are any three vectors such that  bc0 and ab0, then a and b  are \overrightarrow{b}\cdot\overrightarrow{c}\ne0\ and\ \overrightarrow{a}\cdot\overrightarrow{b}\ne0,\ then\ \overrightarrow{a}\ and\ \overrightarrow{b\ }\ are\   



 inclined at an angle π3inclined\ at\ an\ angle\ \frac{\pi}{3}  

 parallelparallel  

 inclined at an angle π6inclined\ at\ an\ angle\ \frac{\pi}{6}  

 perpendicular perpendicular\   

6.

FILL IN THE BLANK QUESTION

30 sec • 1 pt

If   a, b,c \ \overrightarrow{a},\ \overrightarrow{b},\overrightarrow{c}\   are non - coplanar ,non-zero vectors such that   [a,b,c]=3 then {[a×b, b×c,c×a]}2 \ \left[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right]=3\ then\ \left\{\left[\overrightarrow{a}\times\overrightarrow{b},\ \overrightarrow{b}\times\overrightarrow{c},\overrightarrow{c}\times\overrightarrow{a}\right]\right\}^2\   is equal to 

7.

FILL IN THE BLANK QUESTION

45 sec • 1 pt

If the volume of the parallelpiped with    (a×b)×(b×c),(b×c)×(c×a) and \ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)\ and\     (c×a)×(a×b)\ \left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)  as conterminous edges is ,



Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?