Vector Algebra

Vector Algebra

12th Grade

10 Qs

quiz-placeholder

Similar activities

Vectores

Vectores

12th Grade

15 Qs

WEEK V - MATH V

WEEK V - MATH V

11th - 12th Grade

10 Qs

12 B: INTE/DIFF/VECTORS / 17 DEC 2020

12 B: INTE/DIFF/VECTORS / 17 DEC 2020

12th Grade

10 Qs

Chapitre 4 - Vecteurs géométriques et vecteurs algébriques

Chapitre 4 - Vecteurs géométriques et vecteurs algébriques

11th - 12th Grade

15 Qs

BÀI TẬP TỔNG HIỆU VÉC TƠ

BÀI TẬP TỔNG HIỆU VÉC TƠ

10th - 12th Grade

10 Qs

12 B : STRAIGHT LINES : 08 JAN 2020

12 B : STRAIGHT LINES : 08 JAN 2020

12th Grade

10 Qs

Vectors I

Vectors I

11th - 12th Grade

9 Qs

Vektoren_2

Vektoren_2

10th Grade - University

15 Qs

Vector Algebra

Vector Algebra

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Anitha T

Used 99+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If

 a,b,c\overrightarrow{a}\overrightarrow{,b,}\overrightarrow{c}  are three unit vectors such that  a\overrightarrow{a}    is perpendicular to  b\overrightarrow{b}   , and is parallel to  c\overrightarrow{c}   then  a(b×c)\overrightarrow{a}\left(\overrightarrow{b}\times\overrightarrow{c}\right)   is equal to

 a\overrightarrow{a}  

 b\overrightarrow{b}  

 c\overrightarrow{c}  

 0\overrightarrow{0}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 [a,b,c]=1 \left[\overrightarrow{a}\overrightarrow{,b}\overrightarrow{,c}\right]=1\   then the value of   a(b×c)(c×a)b +b(c×a)(a×b)c+c(a×b)(c×b)a\ \frac{\overrightarrow{a}\cdot\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{c}\times\overrightarrow{a}\right)\cdot\overrightarrow{b}}\ +\frac{\overrightarrow{b}\cdot\left(\overrightarrow{c}\times\overrightarrow{a}\right)}{\left(\overrightarrow{a}\times\overrightarrow{b}\right)\cdot\overrightarrow{c}}+\frac{\overrightarrow{c}\cdot\left(\overrightarrow{a}\times\overrightarrow{b}\right)}{\left(\overrightarrow{c}\times\overrightarrow{b}\right)\cdot\overrightarrow{a}}  


-1

2

1

3

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\  are the unit vectors such that    [a,b, a×b]=π4, \left[\overrightarrow{a},\overrightarrow{b},\ \overrightarrow{a}\times\overrightarrow{b}\right]=\frac{\pi}{4},\   then the angle between    a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\   is 

 π4\frac{\pi}{4}  

 π3\frac{\pi}{3}  

 π6\frac{\pi}{6}  

 π2\frac{\pi}{2}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Consider the vectors  a,b,c,d\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d} such that    (a×b)×(c×d)=0.\ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)=\overrightarrow{0}.  Let  P1P_1   and  P2P_2   be the planes determined  by the pairs of vectors a,b and c,d \overrightarrow{a},\overrightarrow{b}\ and\ \overrightarrow{c},\overrightarrow{d}\   respectively .Then the angle between P1 and P2 is P_1\ and\ P_2\ is\    



 60°60\degree  

 0°0\degree  

 90°90\degree  

 45°45\degree  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a×(b×c)=(a×b)×c,\ \overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)=\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\overrightarrow{c},    where a,b,c \ where\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\  are any three vectors such that  bc0 and ab0, then a and b  are \overrightarrow{b}\cdot\overrightarrow{c}\ne0\ and\ \overrightarrow{a}\cdot\overrightarrow{b}\ne0,\ then\ \overrightarrow{a}\ and\ \overrightarrow{b\ }\ are\   



 inclined at an angle π3inclined\ at\ an\ angle\ \frac{\pi}{3}  

 parallelparallel  

 inclined at an angle π6inclined\ at\ an\ angle\ \frac{\pi}{6}  

 perpendicular perpendicular\   

6.

FILL IN THE BLANK QUESTION

30 sec • 1 pt

If   a, b,c \ \overrightarrow{a},\ \overrightarrow{b},\overrightarrow{c}\   are non - coplanar ,non-zero vectors such that   [a,b,c]=3 then {[a×b, b×c,c×a]}2 \ \left[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right]=3\ then\ \left\{\left[\overrightarrow{a}\times\overrightarrow{b},\ \overrightarrow{b}\times\overrightarrow{c},\overrightarrow{c}\times\overrightarrow{a}\right]\right\}^2\   is equal to 

7.

FILL IN THE BLANK QUESTION

45 sec • 1 pt

If the volume of the parallelpiped with    (a×b)×(b×c),(b×c)×(c×a) and \ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)\ and\     (c×a)×(a×b)\ \left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)  as conterminous edges is ,



Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?