Search Header Logo

Vector Algebra

Authored by Anitha T

Mathematics

12th Grade

Used 100+ times

Vector Algebra
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If

 a,b,c\overrightarrow{a}\overrightarrow{,b,}\overrightarrow{c}  are three unit vectors such that  a\overrightarrow{a}    is perpendicular to  b\overrightarrow{b}   , and is parallel to  c\overrightarrow{c}   then  a(b×c)\overrightarrow{a}\left(\overrightarrow{b}\times\overrightarrow{c}\right)   is equal to

 a\overrightarrow{a}  

 b\overrightarrow{b}  

 c\overrightarrow{c}  

 0\overrightarrow{0}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 [a,b,c]=1 \left[\overrightarrow{a}\overrightarrow{,b}\overrightarrow{,c}\right]=1\   then the value of   a(b×c)(c×a)b +b(c×a)(a×b)c+c(a×b)(c×b)a\ \frac{\overrightarrow{a}\cdot\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{c}\times\overrightarrow{a}\right)\cdot\overrightarrow{b}}\ +\frac{\overrightarrow{b}\cdot\left(\overrightarrow{c}\times\overrightarrow{a}\right)}{\left(\overrightarrow{a}\times\overrightarrow{b}\right)\cdot\overrightarrow{c}}+\frac{\overrightarrow{c}\cdot\left(\overrightarrow{a}\times\overrightarrow{b}\right)}{\left(\overrightarrow{c}\times\overrightarrow{b}\right)\cdot\overrightarrow{a}}  


-1

2

1

3

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\  are the unit vectors such that    [a,b, a×b]=π4, \left[\overrightarrow{a},\overrightarrow{b},\ \overrightarrow{a}\times\overrightarrow{b}\right]=\frac{\pi}{4},\   then the angle between    a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\   is 

 π4\frac{\pi}{4}  

 π3\frac{\pi}{3}  

 π6\frac{\pi}{6}  

 π2\frac{\pi}{2}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Consider the vectors  a,b,c,d\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d} such that    (a×b)×(c×d)=0.\ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)=\overrightarrow{0}.  Let  P1P_1   and  P2P_2   be the planes determined  by the pairs of vectors a,b and c,d \overrightarrow{a},\overrightarrow{b}\ and\ \overrightarrow{c},\overrightarrow{d}\   respectively .Then the angle between P1 and P2 is P_1\ and\ P_2\ is\    



 60°60\degree  

 0°0\degree  

 90°90\degree  

 45°45\degree  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a×(b×c)=(a×b)×c,\ \overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)=\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\overrightarrow{c},    where a,b,c \ where\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\  are any three vectors such that  bc0 and ab0, then a and b  are \overrightarrow{b}\cdot\overrightarrow{c}\ne0\ and\ \overrightarrow{a}\cdot\overrightarrow{b}\ne0,\ then\ \overrightarrow{a}\ and\ \overrightarrow{b\ }\ are\   



 inclined at an angle π3inclined\ at\ an\ angle\ \frac{\pi}{3}  

 parallelparallel  

 inclined at an angle π6inclined\ at\ an\ angle\ \frac{\pi}{6}  

 perpendicular perpendicular\   

6.

FILL IN THE BLANK QUESTION

30 sec • 1 pt

If   a, b,c \ \overrightarrow{a},\ \overrightarrow{b},\overrightarrow{c}\   are non - coplanar ,non-zero vectors such that   [a,b,c]=3 then {[a×b, b×c,c×a]}2 \ \left[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right]=3\ then\ \left\{\left[\overrightarrow{a}\times\overrightarrow{b},\ \overrightarrow{b}\times\overrightarrow{c},\overrightarrow{c}\times\overrightarrow{a}\right]\right\}^2\   is equal to 

7.

FILL IN THE BLANK QUESTION

45 sec • 1 pt

If the volume of the parallelpiped with    (a×b)×(b×c),(b×c)×(c×a) and \ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)\ and\     (c×a)×(a×b)\ \left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)  as conterminous edges is ,



Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?