Theory of eigensystems-Review

Theory of eigensystems-Review

University

6 Qs

quiz-placeholder

Similar activities

Distribución Normal

Distribución Normal

University

10 Qs

Liczba Pi

Liczba Pi

1st Grade - Professional Development

10 Qs

Nevezetes diszkrét eloszlások

Nevezetes diszkrét eloszlások

University

11 Qs

Test Unit 2 MB2

Test Unit 2 MB2

University

10 Qs

OR Objectives (practice)

OR Objectives (practice)

University

10 Qs

Kendallova klasifikace front

Kendallova klasifikace front

University

8 Qs

Queuing Analysis

Queuing Analysis

University

8 Qs

distribuciones de probabilidad

distribuciones de probabilidad

University

8 Qs

Theory of eigensystems-Review

Theory of eigensystems-Review

Assessment

Quiz

Mathematics

University

Hard

Created by

Francoise Tisseur

Used 44+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Every nxn real matrix has n real eigenvalues counting multiplicities.

True

False

2.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

A matrix A is unitarily diagonalizable if and only if ...

A has a full set of linearly independent eigenvectors.

A has disctinct eigenvalues.

A is normal.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the minimal polynomial of the nxn identity matrix?

λ-1

(λ-1)n

λn

λ

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Let the Jordan canonical form of A have p Jordan blocks. Which of the following statements is correct?

A has p linearly independent eigenvectors.

A has p distinct eigenvalues.

The eigenvalue λ has algebraic multiplicity p.

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Let μ be an eigenvalue of A that belongs to exactly two 3x3 Jordan blocks. Select the correct statement.

The eigenvalue μ has algebraic multiplicity 3 and geometric multiplicity 2.

The eigenvalue μ has geometric multiplicity 2 and index 3.

The eigenvalue μ has algebraic multiplicity 6 and index 2.

6.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Let p be a scalar polynomial and let λ be an eigenvalue of A.

Select the correct statement.

λ is an eigenvalue of p(A).

p(λ) be an eigenvalue of p(A).