Maclaurin and Taylor Series

Maclaurin and Taylor Series

University

10 Qs

quiz-placeholder

Similar activities

CAT II: MCQ:Numerical Methods

CAT II: MCQ:Numerical Methods

University

10 Qs

Logs and Exponents Review

Logs and Exponents Review

11th Grade - University

15 Qs

Regla de la cadena, derivadas implícitas ADM

Regla de la cadena, derivadas implícitas ADM

University

10 Qs

Integrales

Integrales

University

14 Qs

Аналітична геометрія (практика)

Аналітична геометрія (практика)

University

10 Qs

PARTIAL FRACTIONS

PARTIAL FRACTIONS

12th Grade - University

10 Qs

Kuis 1: Sinyal dan Sistem Waktu-Diskret

Kuis 1: Sinyal dan Sistem Waktu-Diskret

University

11 Qs

FOURIER SERIES

FOURIER SERIES

University

10 Qs

Maclaurin and Taylor Series

Maclaurin and Taylor Series

Assessment

Quiz

Mathematics

University

Medium

CCSS
HSA.SSE.A.2, HSF.IF.C.8, HSF.LE.A.2

+1

Standards-aligned

Created by

CHEW YEE MING undefined

Used 42+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Maclaurin series has center at __________.

x = 0

x = 1

x = e

x = c

Tags

CCSS.HSA.APR.A.1

CCSS.HSA.SSE.A.2

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Taylor series has center at _________.

x = 0

x = 1

x = e

x = c

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Maclaurin series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

Tags

CCSS.HSF.IF.C.8

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Taylor series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  exe^x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

Tags

CCSS.HSF.LE.A.2

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  sinx\sin x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the Maclaurin polynomial with degree n = 2 of f(x)=e3xf\left(x\right)=e^{3x}  .

 1+x+x21+x+x^2  

 1+3x+6x21+3x+6x^2  

 1+3x+92x21+3x+\frac{9}{2}x^2  

 1+3x+9x21+3x+9x^2  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics