Maclaurin and Taylor Series

Maclaurin and Taylor Series

University

10 Qs

quiz-placeholder

Similar activities

AP Calc Practice 1.1-1.4

AP Calc Practice 1.1-1.4

11th Grade - University

10 Qs

Revision unit 1 A

Revision unit 1 A

University

10 Qs

Pra UTS Yuk! [Eps 01]

Pra UTS Yuk! [Eps 01]

University

10 Qs

Невизначений інтеграл

Невизначений інтеграл

University

12 Qs

RAZON DE CAMBIO Y DERIVADAS DE SEGUNDO ORDEN    (ADM G3)

RAZON DE CAMBIO Y DERIVADAS DE SEGUNDO ORDEN (ADM G3)

University

12 Qs

Estatistika

Estatistika

University

10 Qs

FOURIER SERIES

FOURIER SERIES

University

10 Qs

OSDP on Foundations of Mathematics

OSDP on Foundations of Mathematics

University

15 Qs

Maclaurin and Taylor Series

Maclaurin and Taylor Series

Assessment

Quiz

Mathematics

University

Medium

CCSS
HSA.SSE.A.2, HSF.IF.C.8, HSF.LE.A.2

+1

Standards-aligned

Created by

CHEW YEE MING undefined

Used 42+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Maclaurin series has center at __________.

x = 0

x = 1

x = e

x = c

Tags

CCSS.HSA.APR.A.1

CCSS.HSA.SSE.A.2

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Taylor series has center at _________.

x = 0

x = 1

x = e

x = c

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Maclaurin series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

Tags

CCSS.HSF.IF.C.8

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Taylor series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  exe^x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

Tags

CCSS.HSF.LE.A.2

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  sinx\sin x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the Maclaurin polynomial with degree n = 2 of f(x)=e3xf\left(x\right)=e^{3x}  .

 1+x+x21+x+x^2  

 1+3x+6x21+3x+6x^2  

 1+3x+92x21+3x+\frac{9}{2}x^2  

 1+3x+9x21+3x+9x^2  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?