Maclaurin and Taylor Series

Maclaurin and Taylor Series

University

10 Qs

quiz-placeholder

Similar activities

Week 8 MA1022 SP2 2022

Week 8 MA1022 SP2 2022

University

10 Qs

Derivada de la función trigonométricas

Derivada de la función trigonométricas

12th Grade - University

12 Qs

Basic Integration

Basic Integration

University

10 Qs

indices

indices

University

10 Qs

Quiz on module-03

Quiz on module-03

University

15 Qs

CALCULUS

CALCULUS

University

10 Qs

Fracciones Parciales

Fracciones Parciales

University

9 Qs

Funciones lineales

Funciones lineales

University

8 Qs

Maclaurin and Taylor Series

Maclaurin and Taylor Series

Assessment

Quiz

Mathematics

University

Medium

CCSS
HSA.SSE.A.2, HSF.IF.C.8, HSF.LE.A.2

+1

Standards-aligned

Created by

CHEW YEE MING undefined

Used 42+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Maclaurin series has center at __________.

x = 0

x = 1

x = e

x = c

Tags

CCSS.HSA.APR.A.1

CCSS.HSA.SSE.A.2

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Taylor series has center at _________.

x = 0

x = 1

x = e

x = c

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Maclaurin series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

Tags

CCSS.HSF.IF.C.8

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Taylor series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  exe^x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

Tags

CCSS.HSF.LE.A.2

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  sinx\sin x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the Maclaurin polynomial with degree n = 2 of f(x)=e3xf\left(x\right)=e^{3x}  .

 1+x+x21+x+x^2  

 1+3x+6x21+3x+6x^2  

 1+3x+92x21+3x+\frac{9}{2}x^2  

 1+3x+9x21+3x+9x^2  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics