Quis bilangan dan fungsi Kompleks

Quis bilangan dan fungsi Kompleks

University

16 Qs

quiz-placeholder

Similar activities

MATEMATIK TAMBAHAN TINGKATAN 4

MATEMATIK TAMBAHAN TINGKATAN 4

12th Grade - Professional Development

20 Qs

PERSAMAAN KUADRAT KELAS 9

PERSAMAAN KUADRAT KELAS 9

University

17 Qs

UTS Kalkulus Lanjut Statistika 2020/2021

UTS Kalkulus Lanjut Statistika 2020/2021

University

11 Qs

Evaluasi Fungsi Komposisi dan Invers

Evaluasi Fungsi Komposisi dan Invers

11th Grade - University

20 Qs

Formulir tanpa judul

Formulir tanpa judul

1st Grade - University

20 Qs

Quiz Relasi dan Fungsi Matematika

Quiz Relasi dan Fungsi Matematika

8th Grade - University

20 Qs

SUMATIF AKHIR SEMESTER (SAS) MATEMATIKA XI GANJIL TP. 2024/2025

SUMATIF AKHIR SEMESTER (SAS) MATEMATIKA XI GANJIL TP. 2024/2025

11th Grade - University

20 Qs

Ulangkaji Matematik Tingkatan 4 Bab 1

Ulangkaji Matematik Tingkatan 4 Bab 1

University

20 Qs

Quis bilangan dan fungsi Kompleks

Quis bilangan dan fungsi Kompleks

Assessment

Quiz

Mathematics

University

Hard

Created by

tata -

FREE Resource

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Diketahui f(z) = z². Jika z = 2 + i, maka f(z) bernilai:

3+4i

3+8i

3+0i

4+5i

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Fungsi f(z) = z̅ termasuk:

Fungsi holomorf

Fungsi tidak holomorf

Fungsi konstan

Fungsi linear

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Jika f(z) = e^(iz), maka nilai f(π) adalah:

1

-1

i

-i

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Fungsi f(z) = 1/z mempunyai singularitas di:

z=0

z=1

z=∞

Semua bilangan real

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Jika f(z) = z³ + 1, maka akar-akar dari f(z) = 0 adalah:

1,-1,i

-1, (1/2)+(√3/2)i, (1/2)-(√3/2)i

1,i,-i

0,1,-1

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Fungsi f(z) dikatakan holomorf di z jika memenuhi:

Persamaan Laplace

Persamaan Cauchy-Riemann

Persamaan Maxwell

Persamaan Schrodinger

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Fungsi f(z) = z² memetakan bidang kompleks ke:

Bidang real

Bidang imajiner

Bidang kompleks

Bidang nol

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics