Derivadas de Funciones Trigonométricas Inversas

Derivadas de Funciones Trigonométricas Inversas

12th Grade - University

7 Qs

quiz-placeholder

Similar activities

Latihan soal Turunan Fungsi Trigonometri

Latihan soal Turunan Fungsi Trigonometri

12th Grade

10 Qs

Exponential Functions and Their Graphs

Exponential Functions and Their Graphs

12th Grade

10 Qs

Chain Rule

Chain Rule

11th - 12th Grade

12 Qs

Geometria analityczna

Geometria analityczna

7th - 12th Grade

10 Qs

SUMA Y RESTA DE POLINOMIOS

SUMA Y RESTA DE POLINOMIOS

1st Grade - University

10 Qs

Turunan Fungsi Aljabar

Turunan Fungsi Aljabar

11th - 12th Grade

10 Qs

GRAFIK FUNGSI TRIGONOMETRI

GRAFIK FUNGSI TRIGONOMETRI

10th - 12th Grade

10 Qs

Writing Trig Equations from Graphs No Phase Shift

Writing Trig Equations from Graphs No Phase Shift

10th - 12th Grade

9 Qs

Derivadas de Funciones Trigonométricas Inversas

Derivadas de Funciones Trigonométricas Inversas

Assessment

Quiz

Mathematics

12th Grade - University

Hard

Created by

CYNDI TRIGUEROS

Used 10+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Determina la derivada de:  f(x)=arcsen(1x5)f\left(x\right)=arcsen\left(\frac{1}{x^5}\right)  

 y=5xx101y'=\frac{-5}{x\sqrt{x^{10}-1}}  

 y=5x1x10y'=\frac{-5}{x\sqrt{1-x^{10}}}  

 y=5xx101y'=\frac{-5x}{\sqrt{x^{10}-1}}  

 y=5x611x10y'=\frac{-5}{x^6\sqrt{1-\frac{1}{x^{10}}}}  

 y=5x1x10y'=\frac{-5x}{\sqrt{1-x^{10}}}  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 y=arccos(8e(5x))y=\arccos\left(8e^{\left(-5x\right)}\right)  calcula la derivada de

 y=8e(5x)164e(5x2)y'=\frac{8e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(-5x^2\right)}}}  

 y=40e(5x)164e(10x)y'=\frac{40e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(-10x\right)}}}  

 y=40e(5x)164e(5x2)y'=\frac{40e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(-5x^2\right)}}}  

 y=40e(5x)164e(25x2)y'=\frac{-40e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(25x^2\right)}}}  

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 f(x)=arctan6(x4)f\left(x\right)=\arctan^6\left(x^{-4}\right)  

 y=24x5arctan5(x4)1+x8y'=\frac{-24x^{-5}\arctan^5\left(x^{-4}\right)}{1+x^8}  

 y=6x3arctan5(x4)x8+1y'=\frac{-6x^3\arctan^5\left(x^{-4}\right)}{x^8+1}  

 y=24x3arctan5(x4)x8+1y'=\frac{-24x^3\arctan^5\left(x^{-4}\right)}{x^8+1}  

 y=6x5arctan5(x4)x8+1y'=\frac{-6x^{-5}\arctan^5\left(x^{-4}\right)}{x^8+1}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 y=arcsen(x24)y=arcsen\left(\sqrt{x^2-4}\right)  

 y=x5x2       x24y'=\frac{x}{\sqrt{5-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=2x3x2       x24y'=\frac{2x}{\sqrt{3-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=x3x2       x24y'=\frac{x}{\sqrt{3-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=2x5x2       x24y'=\frac{2x}{\sqrt{5-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=x5x2   y'=\frac{x}{\sqrt{5-x^2\ \ }\ }  

5.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

 f(x)=arcsec(secx)f\left(x\right)=\operatorname{arcsec}\left(\sec x\right)  

 y=sec(x)tan(x)sec(x)sec2(x)1y'=\frac{\sec\left(x\right)\tan\left(x\right)}{\sec\left(x\right)\sqrt{\sec^2\left(x\right)-1}}  

 11  

 00  

 y=tan(x)sec2(x)1y'=\frac{\tan\left(x\right)}{\sqrt{\sec^2\left(x\right)-1}}  

6.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

 y=arccot(7(x))y=\operatorname{arccot}\left(7^{\left(x\right)}\right)  

 y=7xln(7)1+7x2y'=\frac{-7^x\ln\left(7\right)}{1+7^{x^2}}  

 y=7xln(7)1+72xy'=\frac{-7^x\ln\left(7\right)}{1+7^{2x}}  

 y=7xln(7)(1+72x)y'=\frac{-7^x}{\ln\left(7\right)\left(1+7^{2x}\right)}  

 y=7xln(7)1+49xy'=\frac{-7^x\ln\left(7\right)}{1+49^x}  

 y=7xln(7)1+49x2y'=\frac{-7^x\ln\left(7\right)}{1+49^{x^2}}  

7.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

 f(x)=arccsc(x32x+4)5f\left(x\right)=\operatorname{arccsc}\left(x^3-2x+4\right)^5  

 y=5((x32x+4)4)(x32x+4)5(x32x+4)101y'=\frac{-5\left(\left(x^3-2x+4\right)^4\right)}{\left(x^3-2x+4\right)^5\sqrt{\left(x^3-2x+4\right)^{10}-1}}  

 y=5(x32x+4)(x32x+4)101y'=\frac{-5}{\left(x^3-2x+4\right)^{ }\sqrt{\left(x^3-2x+4\right)^{10}-1}}  

 y=5(3x22)(x32x+4)(x32x+4)101y'=\frac{-5\left(3x^2-2\right)}{\left(x^3-2x+4\right)^{ }\sqrt{\left(x^3-2x+4\right)^{10}-1}}  

 y=5(3x22)((x32x+4)4)(x32x+4)5(x32x+4)101y'=\frac{-5\left(3x^2-2\right)\left(\left(x^3-2x+4\right)^4\right)}{\left(x^3-2x+4\right)^5\sqrt{\left(x^3-2x+4\right)^{10}-1}}