Search Header Logo

Trig Review - Identities & Sum/Difference Formulas

Authored by Nolan Deal

Mathematics

11th - 12th Grade

CCSS covered

Used 13+ times

Trig Review - Identities & Sum/Difference Formulas
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

8 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

From the given list, select all equivalent forms of the Pythagorean Identity

 cos2θ+sin2θ=1\cos^2\theta+\sin^2\theta=1  

 1+tan2θ=sec2θ1+\tan^2\theta=\sec^2\theta  

 1+cot2θ=sec2θ1+\cot^2\theta=\sec^2\theta  

 1+tan2θ=csc2θ1+\tan^2\theta=\csc^2\theta  

 1+cot2θ=csc2θ1+\cot^2\theta=\csc^2\theta  

2.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Select all correct even/odd identities from the given list.

 sin(x)=sin(x)\sin\left(-x\right)=\sin\left(x\right)  

 cos(x)=cos(x)\cos\left(-x\right)=\cos\left(x\right)  

 tan(x)=tan(x)\tan\left(-x\right)=-\tan\left(x\right)  

 sin(x)=sin(x)\sin\left(-x\right)=-\sin\left(x\right)  

 cos(x)=cos(x)\cos\left(-x\right)=-\cos\left(x\right)  

Tags

CCSS.HSF.TF.A.4

3.

MULTIPLE SELECT QUESTION

1 min • 1 pt

From the given list, select all equivalent forms of the Pythagorean Identity

cos2θ+sin2θ=1\cos^2\theta+\sin^2\theta=1

sin2θ=cos2θ1\sin^2\theta=\cos^2\theta-1

cos2θ=1sin2θ\cos^2\theta=1-\sin^2\theta

cos2θ=1+sin2θ\cos^2\theta=1+\sin^2\theta

sin2θ=1cos2θ\sin^2\theta=1-\cos^2\theta

Tags

CCSS.HSF.TF.C.8

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is the best first step for proving  11+cosx=1cosxsin2x\frac{1}{1+\cos x}=\frac{1-\cos x}{\sin^2x}  ?

Multiply the numerator and denominator by the conjugate  (1cosx)\left(1-\cos x\right)  

Square the numerator and denominator

Use a Pythagorean Identity for the denominator to change the  (1+cosx)\left(1+\cos x\right)  to  (sin2x +cos2x+cosx)\left(\sin^2x\ +\cos^2x+\cos x\right)  

Split up the denominator

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Which of the following is the best first step to verify the identity

 cos4xsin4x=2cos2x1\cos^4x-\sin^4x=2\cos^2x-1  

Split up the  (sin4x)\left(\sin^4x\right)  as  (sin2x)(sin2x)\left(\sin^2x\right)\left(\sin^2x\right)  to set up a Pythagorean Identity substitution 

Split up the  (cos4x)\left(\cos^4x\right)  as  (cos2x)(cos2x)\left(\cos^2x\right)\left(\cos^2x\right)  to set up a Pythagorean Identity substitution 

Factor the left side using the difference of squares

Use a Pythagorean Identity on the right side to change  (2cos2x1)\left(2\cos^2x-1\right)  to  (2(1sin2x)1)\left(2\left(1-\sin^2x\right)-1\right)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Find the exact value of

 cos105°\cos105\degree  

 2+64\frac{\sqrt{2}+\sqrt{6}}{4}  

 232\frac{\sqrt{2}-\sqrt{3}}{2}  

 624\frac{\sqrt{6}-\sqrt{2}}{4}  

 264\frac{\sqrt{2}-\sqrt{6}}{4}  

Tags

CCSS.HSF.TF.C.9

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Write the following as a single trigonometric expression, then evaluate the expression.

 sin37°cos113°+cos37°sin113°\sin37\degree\cos113\degree+\cos37\degree\sin113\degree  

 sin150°=32\sin150\degree=\frac{\sqrt{3}}{2}  

 sin150°=12\sin150\degree=\frac{1}{2}  

 sin(76°)0.9703\sin\left(-76\degree\right)\approx-0.9703  

 sin(76°)0.2419\sin\left(-76\degree\right)\approx0.2419  

Tags

CCSS.HSF.TF.C.9

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?