Trig Review - Identities & Sum/Difference Formulas

Trig Review - Identities & Sum/Difference Formulas

11th - 12th Grade

8 Qs

quiz-placeholder

Similar activities

G10 General Revision

G10 General Revision

10th - 12th Grade

11 Qs

IBY1 MAA SL - Rational Function FA #1

IBY1 MAA SL - Rational Function FA #1

11th Grade

10 Qs

Translasi dan Pecerminan

Translasi dan Pecerminan

11th Grade

10 Qs

Remedial UH Fungsi

Remedial UH Fungsi

11th Grade

12 Qs

4A SUMA Y RESTA CON  NOTACION CIENTIFICA

4A SUMA Y RESTA CON NOTACION CIENTIFICA

4th - 11th Grade

12 Qs

Limit

Limit

11th Grade

12 Qs

QUIZ 2021

QUIZ 2021

11th Grade

10 Qs

INTEGRACION

INTEGRACION

12th Grade

10 Qs

Trig Review - Identities & Sum/Difference Formulas

Trig Review - Identities & Sum/Difference Formulas

Assessment

Quiz

Mathematics

11th - 12th Grade

Hard

CCSS
HSF.TF.C.9, HSF.TF.A.4, HSF.TF.C.8

Standards-aligned

Created by

Nolan Deal

Used 13+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

8 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

From the given list, select all equivalent forms of the Pythagorean Identity

 cos2θ+sin2θ=1\cos^2\theta+\sin^2\theta=1  

 1+tan2θ=sec2θ1+\tan^2\theta=\sec^2\theta  

 1+cot2θ=sec2θ1+\cot^2\theta=\sec^2\theta  

 1+tan2θ=csc2θ1+\tan^2\theta=\csc^2\theta  

 1+cot2θ=csc2θ1+\cot^2\theta=\csc^2\theta  

2.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Select all correct even/odd identities from the given list.

 sin(x)=sin(x)\sin\left(-x\right)=\sin\left(x\right)  

 cos(x)=cos(x)\cos\left(-x\right)=\cos\left(x\right)  

 tan(x)=tan(x)\tan\left(-x\right)=-\tan\left(x\right)  

 sin(x)=sin(x)\sin\left(-x\right)=-\sin\left(x\right)  

 cos(x)=cos(x)\cos\left(-x\right)=-\cos\left(x\right)  

Tags

CCSS.HSF.TF.A.4

3.

MULTIPLE SELECT QUESTION

1 min • 1 pt

From the given list, select all equivalent forms of the Pythagorean Identity

cos2θ+sin2θ=1\cos^2\theta+\sin^2\theta=1

sin2θ=cos2θ1\sin^2\theta=\cos^2\theta-1

cos2θ=1sin2θ\cos^2\theta=1-\sin^2\theta

cos2θ=1+sin2θ\cos^2\theta=1+\sin^2\theta

sin2θ=1cos2θ\sin^2\theta=1-\cos^2\theta

Tags

CCSS.HSF.TF.C.8

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is the best first step for proving  11+cosx=1cosxsin2x\frac{1}{1+\cos x}=\frac{1-\cos x}{\sin^2x}  ?

Multiply the numerator and denominator by the conjugate  (1cosx)\left(1-\cos x\right)  

Square the numerator and denominator

Use a Pythagorean Identity for the denominator to change the  (1+cosx)\left(1+\cos x\right)  to  (sin2x +cos2x+cosx)\left(\sin^2x\ +\cos^2x+\cos x\right)  

Split up the denominator

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Which of the following is the best first step to verify the identity

 cos4xsin4x=2cos2x1\cos^4x-\sin^4x=2\cos^2x-1  

Split up the  (sin4x)\left(\sin^4x\right)  as  (sin2x)(sin2x)\left(\sin^2x\right)\left(\sin^2x\right)  to set up a Pythagorean Identity substitution 

Split up the  (cos4x)\left(\cos^4x\right)  as  (cos2x)(cos2x)\left(\cos^2x\right)\left(\cos^2x\right)  to set up a Pythagorean Identity substitution 

Factor the left side using the difference of squares

Use a Pythagorean Identity on the right side to change  (2cos2x1)\left(2\cos^2x-1\right)  to  (2(1sin2x)1)\left(2\left(1-\sin^2x\right)-1\right)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Find the exact value of

 cos105°\cos105\degree  

 2+64\frac{\sqrt{2}+\sqrt{6}}{4}  

 232\frac{\sqrt{2}-\sqrt{3}}{2}  

 624\frac{\sqrt{6}-\sqrt{2}}{4}  

 264\frac{\sqrt{2}-\sqrt{6}}{4}  

Tags

CCSS.HSF.TF.C.9

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Write the following as a single trigonometric expression, then evaluate the expression.

 sin37°cos113°+cos37°sin113°\sin37\degree\cos113\degree+\cos37\degree\sin113\degree  

 sin150°=32\sin150\degree=\frac{\sqrt{3}}{2}  

 sin150°=12\sin150\degree=\frac{1}{2}  

 sin(76°)0.9703\sin\left(-76\degree\right)\approx-0.9703  

 sin(76°)0.2419\sin\left(-76\degree\right)\approx0.2419  

Tags

CCSS.HSF.TF.C.9

8.

FILL IN THE BLANK QUESTION

5 mins • 1 pt

If cosA=35\cos A=\frac{3}{5}  where  0°A90°0\degree\le A\le90\degree  and  sinB=513\sin B=\frac{5}{13} where  90°B180°90\degree\le B\le180\degree  find  cos(A+B)\cos\left(A+B\right)   .

Tags

CCSS.HSF.TF.C.9