Simple Quiz - Integration

Simple Quiz - Integration

University

9 Qs

quiz-placeholder

Similar activities

Differentiate logarithms

Differentiate logarithms

University

10 Qs

Differential Equations

Differential Equations

University

10 Qs

Basic Differentiation Rules

Basic Differentiation Rules

11th Grade - University

12 Qs

First Order PDEs

First Order PDEs

University

10 Qs

Implicit Differentiation Practice Part 2

Implicit Differentiation Practice Part 2

10th Grade - University

12 Qs

Differential Equations - Separable Variable Method

Differential Equations - Separable Variable Method

University

10 Qs

Implicit Differentiation

Implicit Differentiation

10th Grade - University

11 Qs

D.E Basics-1

D.E Basics-1

University

9 Qs

Simple Quiz - Integration

Simple Quiz - Integration

Assessment

Quiz

Mathematics

University

Hard

Created by

Evange Jeba

Used 2+ times

FREE Resource

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Which one is correct for Gauss Divergence theorem?

Surface Integral of the function is equal to the volume integral of the same function

Line integral of the function is equal to the Surface integral of the function

Surface integral of the function is equal to the Volume integral of the divergence of the function

Line integral of the function is equal to the volume integral

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Polar Coordinates of a hemisphere ?

x=cosθ, y=sin θx=\cos\theta,\ y=\sin\ \theta

x=r, y=θx=r,\ y=\theta

x=y=sinθx=y=\sin\theta

x=rcosθ, y=rsinθx=r\cos\theta,\ y=r\sin\theta

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The line integral of the function over the curve is equal to the surface integral of the normal component of curl function over the surface.

Choose the correct theorem for this statement..

Green's Theorem

Stoke's theorem

Gauss Divergence Theorem

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 y2=x, y=xy^2=x,\ y=x  What are the points of intersections of the closed curves?

(1.0 & (0,1))

(0,0) & (2,2)

(1,1) & (2,2)

(0,0) & (1,1)

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Choose the correct statement of Green's theorem

Pdx+Qdy=(QxPy)dxdy\int_{ }^{ }Pdx+Qdy=\int\int\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy

Pdx+Qdy=(PyQx)dxdy\int_{ }^{ }Pdx+Qdy=\int_{ }^{ }\int_{ }^{ }\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)dxdy

Pdx+Qdy=(Py+Qx)dxdy\int_{ }^{ }Pdx+Qdy=\int_{ }^{ }\int_{ }^{ }\left(\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial x}\right)dxdy

PdxQdy=(PyQx)dxdy\int_{ }^{ }Pdx-Qdy=\int_{ }^{ }\int_{ }^{ }\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)dxdy

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

dV=??, where V is the Volume of cube

dx dy

dy dz

dx dy dz

0

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Limit points of x and y for the surface x2+y2=4x^2+y^2=4  

 x: 2 to 2, y: 0 to 4x2x:\ -2\ to\ 2,\ y:\ 0\ to\ \sqrt{4-x^2}  

 x: 0 to 2, y: 0 to 4x2x:\ 0\ to\ 2,\ y:\ 0\ to\ \sqrt{4-x^2}  

 x: 0 to 2, y: 4x2 to 4x2x:\ 0\ to\ 2,\ y:\ -\sqrt{4-x^2}\ to\ \sqrt{4-x^2}  

 x: 2 to 2, y: 4x2 to 4x2x:\ -2\ to\ 2,\ y:\ -\sqrt{4-x^2}\ to\ \sqrt{4-x^2}  

8.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How many surfaces involves in the upper hemisphere?

3

1

2

4

9.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Four points of a square OABC are (0,0), (a,0), (a,a) and (0,a), then the value of the function x2i+yx jx^2\overrightarrow{i}+yx\ \overrightarrow{j} along the line OA is ?? 

 yx jyx\ \overrightarrow{j}  

 x2ix^2\overrightarrow{i}  

 yy  

 x2+1x^2+1