Search Header Logo

Simple Quiz - Integration

Authored by Evange Jeba

Mathematics

University

CCSS covered

Used 2+ times

Simple Quiz - Integration
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Which one is correct for Gauss Divergence theorem?

Surface Integral of the function is equal to the volume integral of the same function

Line integral of the function is equal to the Surface integral of the function

Surface integral of the function is equal to the Volume integral of the divergence of the function

Line integral of the function is equal to the volume integral

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Polar Coordinates of a hemisphere ?

x=cosθ, y=sin θx=\cos\theta,\ y=\sin\ \theta

x=r, y=θx=r,\ y=\theta

x=y=sinθx=y=\sin\theta

x=rcosθ, y=rsinθx=r\cos\theta,\ y=r\sin\theta

Tags

CCSS.HSN.CN.B.4

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The line integral of the function over the curve is equal to the surface integral of the normal component of curl function over the surface.

Choose the correct theorem for this statement..

Green's Theorem

Stoke's theorem

Gauss Divergence Theorem

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 y2=x, y=xy^2=x,\ y=x  What are the points of intersections of the closed curves?

(1.0 & (0,1))

(0,0) & (2,2)

(1,1) & (2,2)

(0,0) & (1,1)

Tags

CCSS.HSA.REI.C.7

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Choose the correct statement of Green's theorem

Pdx+Qdy=(QxPy)dxdy\int_{ }^{ }Pdx+Qdy=\int\int\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy

Pdx+Qdy=(PyQx)dxdy\int_{ }^{ }Pdx+Qdy=\int_{ }^{ }\int_{ }^{ }\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)dxdy

Pdx+Qdy=(Py+Qx)dxdy\int_{ }^{ }Pdx+Qdy=\int_{ }^{ }\int_{ }^{ }\left(\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial x}\right)dxdy

PdxQdy=(PyQx)dxdy\int_{ }^{ }Pdx-Qdy=\int_{ }^{ }\int_{ }^{ }\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)dxdy

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

dV=??, where V is the Volume of cube

dx dy

dy dz

dx dy dz

0

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Limit points of x and y for the surface x2+y2=4x^2+y^2=4  

 x: 2 to 2, y: 0 to 4x2x:\ -2\ to\ 2,\ y:\ 0\ to\ \sqrt{4-x^2}  

 x: 0 to 2, y: 0 to 4x2x:\ 0\ to\ 2,\ y:\ 0\ to\ \sqrt{4-x^2}  

 x: 0 to 2, y: 4x2 to 4x2x:\ 0\ to\ 2,\ y:\ -\sqrt{4-x^2}\ to\ \sqrt{4-x^2}  

 x: 2 to 2, y: 4x2 to 4x2x:\ -2\ to\ 2,\ y:\ -\sqrt{4-x^2}\ to\ \sqrt{4-x^2}  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?